From 8eac5fd9db23d8e5d07499ed175e7cc89cc70266 Mon Sep 17 00:00:00 2001 From: Xingjian Hui <151739545+huixingjian@users.noreply.github.com> Date: Wed, 30 Oct 2024 00:57:22 +0100 Subject: [PATCH] Update parameters.rst --- docs/source/run/parameters.rst | 6 +++--- 1 file changed, 3 insertions(+), 3 deletions(-) diff --git a/docs/source/run/parameters.rst b/docs/source/run/parameters.rst index 0e5e3d0981..8a1d6eb576 100644 --- a/docs/source/run/parameters.rst +++ b/docs/source/run/parameters.rst @@ -908,13 +908,13 @@ Parameters starting with ``lasers.`` apply to all laser pulses, parameters start In what follows, all chirps are given as defined in `S. Akturk et al., Optics Express 12, 4399 (2004) `__. * ``.beta`` (`float`) optional (default `0.`) - Angular dispersion (or angular chirp) at focus. + Angular dispersion (or angular chirp) at focus in second. * ``.zeta`` (`float`) optional (default `0.`) - Spatial chirp at focus. + Spatial chirp at focus in second*meter. * ``.phi2`` (`float`) optional (default `pi/2`) - Temporal chirp :math:`\phi^{(2)}` at focus. + Temporal chirp :math:`\phi^{(2)}` at focus in second^2. Namely, a wave packet centered on the frequency :math:`(\omega_0 + \delta \omega)` will reach its peak intensity at :math:`z(\delta \omega) = z_0 - c \phi^{(2)} \, \delta \omega`. Thus, a positive :math:`\phi^{(2)}` corresponds to positive chirp, i.e., red part of the spectrum in the front of the pulse and blue part of the spectrum in the back. More specifically, the electric field in the focal plane is of the form: