-
Notifications
You must be signed in to change notification settings - Fork 8
/
eval_dan.py
472 lines (398 loc) · 22.1 KB
/
eval_dan.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
# Copyright 2018 Changan Wang
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
# http://www.apache.org/licenses/LICENSE-2.0
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# =============================================================================
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import os
import sys
import tensorflow as tf
import numpy as np
import cv2
import scipy.io as sio
from scipy.misc import imread, imsave, imshow, imresize
from net import danet
from dataset import dataset_common
from preprocessing import dan_preprocessing
from utility import anchor_manipulator
from utility import custom_op
from utility import bbox_util
from utility import draw_toolbox
# scaffold related configuration
tf.app.flags.DEFINE_string(
'det_dir', './dan_det/',
'The directory where the dataset input data is stored.')
tf.app.flags.DEFINE_string(
'debug_dir', './dan_debug/',
'The directory where the detected images are stored.')
tf.app.flags.DEFINE_string(
'data_dir', 'WIDER_ROOT',
'The directory where the dataset input data is stored.')
tf.app.flags.DEFINE_string(
'subset', 'val', #val or test
'The subset of the dataset to predict.')
tf.app.flags.DEFINE_integer(
'train_image_size', 640,
'The size of the input image for the model to use.')
tf.app.flags.DEFINE_integer(
'num_classes', 2, 'Number of classes to use in the dataset.')
tf.app.flags.DEFINE_integer(
'log_every_n_steps', 10,
'The frequency with which logs are print.')
# model related configuration
tf.app.flags.DEFINE_integer(
'batch_size', 1,
'Batch size for training and evaluation.')
tf.app.flags.DEFINE_string(
'data_format', 'channels_last', # 'channels_first' or 'channels_last'
'A flag to override the data format used in the model. channels_first '
'provides a performance boost on GPU but is not always compatible '
'with CPU. If left unspecified, the data format will be chosen '
'automatically based on whether TensorFlow was built for CPU or GPU.')
# r-fcn subnet configuration
tf.app.flags.DEFINE_float(
'nms_threshold', 0.3, 'nms threshold.')
tf.app.flags.DEFINE_float(
'memory_limit', 577.0, 'the scale ratio to control the max memory.')
tf.app.flags.DEFINE_integer(
'max_per_image', 750, 'max objects in one image.')
tf.app.flags.DEFINE_float(
'select_threshold', 0.01, 'Class-specific confidence score threshold for selecting a box.')
# checkpoint related configuration
tf.app.flags.DEFINE_string(
'checkpoint_path', './dan_logs/',
'The path to a checkpoint from which to fine-tune.')
tf.app.flags.DEFINE_string(
'model_scope', 'dan',
'Model scope name used to replace the name_scope in checkpoint.')
#CUDA_VISIBLE_DEVICES
FLAGS = tf.app.flags.FLAGS
def get_checkpoint():
if tf.gfile.IsDirectory(FLAGS.checkpoint_path):
checkpoint_path = tf.train.latest_checkpoint(FLAGS.checkpoint_path)
else:
checkpoint_path = FLAGS.checkpoint_path
return checkpoint_path
def detect_face(net, image, shrink):
if shrink != 1:
image = cv2.resize(image, None, None, fx=shrink, fy=shrink, interpolation=cv2.INTER_LINEAR)
bboxes, scores = net[0].run(net[2:], feed_dict = {net[1] : image})
det_xmin = bboxes[:, 1] / shrink#image.shape[1] *
det_ymin = bboxes[:, 0] / shrink#image.shape[0] *
det_xmax = bboxes[:, 3] / shrink#image.shape[1] *
det_ymax = bboxes[:, 2] / shrink#image.shape[0] *
det = np.column_stack((det_xmin, det_ymin, det_xmax, det_ymax, scores))
# keep_index = np.where(det[:, 4] >= FLAGS.select_threshold)[0]
# det = det[keep_index, :]
# keep_index = det[:, 4].ravel().argsort()[::-1].astype(np.int64)[:FLAGS.max_per_image]
# det = det[keep_index, :]
top_bbox_num = min(det.shape[0] - 1, int(FLAGS.max_per_image * 1.5))
keep_index = det[:, 4].ravel().argsort()[::-1].astype(np.int64)[:top_bbox_num]
det = det[keep_index, :]
return det
def multi_scale_test(net, image, max_im_shrink):
# shrink detecting and shrink only detect big face
st = 0.5 if max_im_shrink >= 0.75 else 0.5 * max_im_shrink
det_s = detect_face(net, image, st)
index = np.where(np.maximum(det_s[:, 2] - det_s[:, 0] + 1, det_s[:, 3] - det_s[:, 1] + 1) > 30)[0]
det_s = det_s[index, :]
# enlarge one times
bt = min(2, max_im_shrink) if max_im_shrink > 1 else (st + max_im_shrink) / 2
det_b = detect_face(net, image, bt)
# enlarge small iamge x times for small face
if max_im_shrink > 2:
bt *= 2
while bt < max_im_shrink:
det_b = np.row_stack((det_b, detect_face(net, image, bt)))
bt *= 2
det_b = np.row_stack((det_b, detect_face(net, image, max_im_shrink)))
# enlarge only detect small face
if bt > 1:
index = np.where(np.minimum(det_b[:, 2] - det_b[:, 0] + 1, det_b[:, 3] - det_b[:, 1] + 1) < 100)[0]
det_b = det_b[index, :]
else:
index = np.where(np.maximum(det_b[:, 2] - det_b[:, 0] + 1, det_b[:, 3] - det_b[:, 1] + 1) > 30)[0]
det_b = det_b[index, :]
return det_s, det_b
def multi_scale_test_pyramid(net, image, max_shrink):
# Use image pyramids to detect faces
det_b = detect_face(net, image, 0.25)
index = np.where(
np.maximum(det_b[:, 2] - det_b[:, 0] + 1, det_b[:, 3] - det_b[:, 1] + 1)
> 30)[0]
det_b = det_b[index, :]
st = [0.75, 1.25, 1.5, 1.75]
for i in range(len(st)):
if (st[i] <= max_shrink):
det_temp = detect_face(net, image, st[i])
# Enlarged images are only used to detect small faces.
if st[i] > 1:
index = np.where(
np.minimum(det_temp[:, 2] - det_temp[:, 0] + 1,
det_temp[:, 3] - det_temp[:, 1] + 1) < 100)[0]
det_temp = det_temp[index, :]
# Shrinked images are only used to detect big faces.
else:
index = np.where(
np.maximum(det_temp[:, 2] - det_temp[:, 0] + 1,
det_temp[:, 3] - det_temp[:, 1] + 1) > 30)[0]
det_temp = det_temp[index, :]
det_b = np.row_stack((det_b, det_temp))
return det_b
# def flip_test(net, image, shrink):
# image_f = cv2.flip(image, 1)
# det_f = detect_face(net, image_f, shrink)
# det_t = np.zeros(det_f.shape)
# det_t[:, 0] = image.shape[1] - det_f[:, 2]
# det_t[:, 1] = det_f[:, 1]
# det_t[:, 2] = image.shape[1] - det_f[:, 0]
# det_t[:, 3] = det_f[:, 3]
# det_t[:, 4] = det_f[:, 4]
# return det_t
def flip_test(net, image, shrink):
image_f = cv2.flip(image, 1)
det_f = detect_face(net, image_f, shrink)
det_t = np.zeros(det_f.shape)
det_t[:, 0] = image.shape[1] - det_f[:, 2] - 1
det_t[:, 1] = det_f[:, 1]
det_t[:, 2] = image.shape[1] - det_f[:, 0] - 1
det_t[:, 3] = det_f[:, 3]
det_t[:, 4] = det_f[:, 4]
return det_t
def bbox_vote(det):
order = det[:, 4].ravel().argsort()[::-1].astype(np.int64)
det = det[order, :]
dets = np.zeros((0, 5), dtype=np.float32)
while det.shape[0] > 0:
# IOU
area = (det[:, 2] - det[:, 0] + 1) * (det[:, 3] - det[:, 1] + 1)
xx1 = np.maximum(det[0, 0], det[:, 0])
yy1 = np.maximum(det[0, 1], det[:, 1])
xx2 = np.minimum(det[0, 2], det[:, 2])
yy2 = np.minimum(det[0, 3], det[:, 3])
w = np.maximum(0.0, xx2 - xx1 + 1)
h = np.maximum(0.0, yy2 - yy1 + 1)
inter = w * h
o = inter / (area[0] + area[:] - inter)
# get needed merge det and delete these det
merge_index = np.where(o >= FLAGS.nms_threshold)[0].astype(np.int64)
det_accu = det[merge_index, :]
det = np.delete(det, merge_index, 0)
#print(det.shape[0])
if merge_index.shape[0] == 0:
det = np.delete(det, [0], 0)
if merge_index.shape[0] <= 1:
# it's totally useless to keep those single detection results
# if merge_index == 1:
# dets = np.row_stack((dets, det_accu))
# if merge_index == 1:
# print('single')
continue
det_accu[:, 0:4] = det_accu[:, 0:4] * np.tile(det_accu[:, -1:], (1, 4))
max_score = np.max(det_accu[:, 4])
det_accu_sum = np.zeros((1, 5), dtype=np.float32)
det_accu_sum[:, 0:4] = np.sum(det_accu[:, 0:4], axis=0) / np.sum(det_accu[:, -1:])
det_accu_sum[:, 4] = max_score
dets = np.row_stack((dets, det_accu_sum))
dets = dets[list(range(min(FLAGS.max_per_image, dets.shape[0]))), :]
return dets.astype(np.float32)
def write_to_txt(f, det, event, im_name):
bbox_xmin = det[:, 0]
bbox_ymin = det[:, 1]
bbox_xmax = det[:, 2]
bbox_ymax = det[:, 3]
scores = det[:, 4]
bbox_height = bbox_ymax - bbox_ymin + 1
bbox_width = bbox_xmax - bbox_xmin + 1
valid_mask = np.logical_and(np.logical_and((np.ceil(bbox_height) >= 10), (bbox_width > 1)), scores > FLAGS.select_threshold)
f.write('{:s}\n'.format(event[0][0] + '/' + im_name + '.jpg'))
f.write('{}\n'.format(np.count_nonzero(valid_mask)))
for det_ind in range(valid_mask.shape[0]):
if not valid_mask[det_ind]:
continue
f.write('{:.1f} {:.1f} {:.1f} {:.1f} {:.3f}\n'.format(np.floor(bbox_xmin[det_ind]), np.floor(bbox_ymin[det_ind]), np.ceil(bbox_width[det_ind]), np.ceil(bbox_height[det_ind]), scores[det_ind]))
#f.write('{:.1f} {:.1f} {:.1f} {:.1f} {:.3f}\n'.format(bbox_xmin[det_ind], bbox_ymin[det_ind], bbox_width[det_ind], bbox_height[det_ind], scores[det_ind]))
def get_shrink(height, width):
"""
Args:
height (int): image height.
width (int): image width.
"""
# avoid out of memory
max_shrink_v1 = (0x7fffffff / FLAGS.memory_limit / (height * width))**0.5
max_shrink_v2 = ((678 * 1024 * 2.0 * 2.0) / (height * width))**0.5
def get_round(x, loc):
str_x = str(x)
if '.' in str_x:
str_before, str_after = str_x.split('.')
len_after = len(str_after)
if len_after >= 3:
str_final = str_before + '.' + str_after[0:loc]
return float(str_final)
else:
return x
max_shrink = get_round(min(max_shrink_v1, max_shrink_v2), 2) - 0.3
if max_shrink >= 1.5 and max_shrink < 2:
max_shrink = max_shrink - 0.1
elif max_shrink >= 2 and max_shrink < 3:
max_shrink = max_shrink - 0.2
elif max_shrink >= 3 and max_shrink < 4:
max_shrink = max_shrink - 0.3
elif max_shrink >= 4 and max_shrink < 5:
max_shrink = max_shrink - 0.4
elif max_shrink >= 5:
max_shrink = max_shrink - 0.5
shrink = max_shrink if max_shrink < 1 else 1
return shrink, max_shrink
def main(_):
with tf.Graph().as_default():
target_shape = None
image_input = tf.placeholder(tf.uint8, shape=(None, None, 3))
features, output_shape = dan_preprocessing.preprocess_for_eval(image_input, target_shape, data_format=FLAGS.data_format, output_rgb=False)
features = tf.expand_dims(features, axis=0)
output_shape = tf.expand_dims(output_shape, axis=0)
all_anchor_scales = [(16.,), (32.,), (64.,), (128.,), (256.,), (512.,)]
all_extra_scales = [(), (), (), (), (), ()]
all_anchor_ratios = [(0.8,), (0.8,), (0.8,), (0.8,), (0.8,), (0.8,)]
all_layer_strides = [4, 8, 16, 32, 64, 128]
offset_list = [0.5, 0.5, 0.5, 0.5, 0.5, 0.5]
with tf.variable_scope(FLAGS.model_scope, default_name=None, values=[features], reuse=tf.AUTO_REUSE):
backbone = danet.VGG16Backbone(FLAGS.data_format)
feature_layers = backbone.get_featmaps(features, training=False)
feature_layers = backbone.build_lfpn(feature_layers, skip_last=3)
with tf.device('/cpu:0'):
anchor_encoder_decoder = anchor_manipulator.AnchorEncoder(positive_threshold=None, ignore_threshold=None, prior_scaling=[0.1, 0.1, 0.2, 0.2])
if FLAGS.data_format == 'channels_first':
all_layer_shapes = [tf.shape(feat)[2:] for feat in feature_layers]
else:
all_layer_shapes = [tf.shape(feat)[1:3] for feat in feature_layers]
total_layers = len(all_layer_shapes)
anchors_height = list()
anchors_width = list()
anchors_depth = list()
for ind in range(total_layers):
_anchors_height, _anchors_width, _anchor_depth = anchor_encoder_decoder.get_anchors_width_height(all_anchor_scales[ind], all_extra_scales[ind], all_anchor_ratios[ind], name='get_anchors_width_height{}'.format(ind))
anchors_height.append(_anchors_height)
anchors_width.append(_anchors_width)
anchors_depth.append(_anchor_depth)
anchors_ymin, anchors_xmin, anchors_ymax, anchors_xmax, _ = anchor_encoder_decoder.get_all_anchors(tf.squeeze(output_shape, axis=0),
anchors_height, anchors_width, anchors_depth,
offset_list, all_layer_shapes, all_layer_strides,
[0.] * total_layers, [False] * total_layers)
num_anchors_per_layer = list()
for ind, layer_shape in enumerate(all_layer_shapes):
_, _num_anchors_per_layer = anchor_encoder_decoder.get_anchors_count(anchors_depth[ind], layer_shape, name='get_anchor_count{}'.format(ind))
num_anchors_per_layer.append(_num_anchors_per_layer)
feature_layers_stage1 = backbone.get_features_stage1(feature_layers, name='prediction_modules_stage1')
feature_layers_stage1 = backbone.build_lfpn(feature_layers_stage1, skip_last=3, name='lfpn_stage1')
location_pred, cls_pred = backbone.get_predict_module(feature_layers_stage1, [1] * len(feature_layers_stage1),
[1] + [1] * (len(feature_layers_stage1) - 1), anchors_depth, name='predict_face')
if FLAGS.data_format == 'channels_first':
cls_pred = [tf.transpose(pred, [0, 2, 3, 1]) for pred in cls_pred]
location_pred = [tf.transpose(pred, [0, 2, 3, 1]) for pred in location_pred]
cls_pred = [tf.reshape(pred, [-1, FLAGS.num_classes]) for pred in cls_pred]
location_pred = [tf.reshape(pred, [-1, 4]) for pred in location_pred]
cls_pred = tf.nn.softmax(tf.concat(cls_pred, axis=0))[:, -1]
location_pred = tf.concat(location_pred, axis=0)
feature_layers_stage2 = backbone.get_features_stage2(feature_layers_stage1, feature_layers, name='prediction_modules_stage2')
feature_layers_stage2 = backbone.build_lfpn(feature_layers_stage2, skip_last=3, name='lfpn_stage2')
final_location_pred, final_cls_pred = backbone.get_predict_module(feature_layers_stage2, [1] * len(feature_layers_stage2),
[3] + [1] * (len(feature_layers_stage2) - 1), anchors_depth, name='predict_cascade')
if FLAGS.data_format == 'channels_first':
final_cls_pred = [tf.transpose(pred, [0, 2, 3, 1]) for pred in final_cls_pred]
final_location_pred = [tf.transpose(pred, [0, 2, 3, 1]) for pred in final_location_pred]
final_cls_pred = [tf.reshape(pred, [-1, FLAGS.num_classes]) for pred in final_cls_pred]
final_location_pred = [tf.reshape(pred, [-1, 4]) for pred in final_location_pred]
final_cls_pred = tf.nn.softmax(tf.concat(final_cls_pred, axis=0))[:, -1]
final_location_pred = tf.concat(final_location_pred, axis=0)
bboxes_pred = anchor_encoder_decoder.decode_anchors(location_pred, anchors_ymin, anchors_xmin, anchors_ymax, anchors_xmax)
num_anchors_per_layer = tf.stack(num_anchors_per_layer)
if FLAGS.data_format == 'channels_first':
feat_height_list = [tf.shape(feat)[2] for feat in feature_layers]
feat_width_list = [tf.shape(feat)[3] for feat in feature_layers]
else:
feat_height_list = [tf.shape(feat)[1] for feat in feature_layers]
feat_width_list = [tf.shape(feat)[2] for feat in feature_layers]
decoded_bbox_list = tf.split(bboxes_pred, num_anchors_per_layer, axis=0, name='split_decoded_bbox')
gt_bboxes_list = tf.split(final_location_pred / tf.expand_dims(tf.constant([10., 10., 5., 5.], dtype=tf.float32) * 2., axis=0), num_anchors_per_layer, axis=0, name='split_gt_bboxes')
gt_lables_list = tf.split(final_cls_pred, num_anchors_per_layer, axis=0, name='split_gt_lables')
easy_mask_list = tf.split(tf.to_int32(cls_pred > 0.03), num_anchors_per_layer, axis=0, name='split_easy_mask')
mask_out_list = []
decode_out_list = []
feat_strides = [4, 8, 16, 32, 64, 128]
for ind in range(len(anchors_depth)):
with tf.name_scope('routing_{}'.format(ind)):
with tf.device('/cpu:0'):
mask_out, decode_out = custom_op.dynamic_anchor_routing(decoded_bbox_list[ind], gt_bboxes_list[ind], gt_lables_list[ind], easy_mask_list[ind], feat_height_list[ind], feat_width_list[ind], anchors_depth[ind], feat_strides[ind], output_shape[0][0], output_shape[0][1], False, 0.03, 0.0)
mask_out_list.append(mask_out)
decode_out_list.append(decode_out)
mask_out = tf.stop_gradient(tf.concat(mask_out_list, axis=0))
# bboxes_pred = tf.stop_gradient(tf.concat(decode_out_list, axis=0))
# cls_pred = final_cls_pred * tf.to_float(mask_out)
first_stage_post_bbox = tf.split(bboxes_pred, num_anchors_per_layer, axis=0, name='split_first_stage_bbox')[2:]
bboxes_pred = tf.concat(first_stage_post_bbox + [tf.stop_gradient(tf.concat(decode_out_list, axis=0))], axis=0)
first_stage_post_cls = tf.split(cls_pred, num_anchors_per_layer, axis=0, name='split_first_stage_cls')[2:]
cls_pred = tf.concat(first_stage_post_cls + [final_cls_pred * tf.to_float(mask_out)], axis=0)
saver = tf.train.Saver()
with tf.Session() as sess:
init = tf.global_variables_initializer()
sess.run(init)
saver.restore(sess, get_checkpoint())
os.makedirs(FLAGS.det_dir, exist_ok=True)
if FLAGS.subset is 'val':
wider_face = sio.loadmat(os.path.join(FLAGS.data_dir, 'wider_face_split', 'wider_face_val.mat')) # Val set
else:
wider_face = sio.loadmat(os.path.join(FLAGS.data_dir, 'wider_face_split', 'wider_face_test.mat')) # Test set
event_list = wider_face['event_list']
file_list = wider_face['file_list']
del wider_face
Path = os.path.join(FLAGS.data_dir, ('WIDER_val' if FLAGS.subset is 'val' else 'WIDER_test'), 'images')
save_path = os.path.join(FLAGS.det_dir, FLAGS.subset)
len_event = len(event_list)
for index, event in enumerate(event_list):
filelist = file_list[index][0]
len_files = len(filelist)
if not os.path.exists(os.path.join(save_path, event[0][0])):
os.makedirs(os.path.join(save_path, event[0][0]))
for num, file in enumerate(filelist):
im_name = file[0][0]
Image_Path = os.path.join(Path, event[0][0], im_name[:]+'.jpg')
image = imread(Image_Path)
#image = imread('manymany.jpg')
shrink, max_shrink = get_shrink(image.shape[0], image.shape[1])
# max_im_shrink = (0x7fffffff / FLAGS.memory_limit / (image.shape[0] * image.shape[1])) ** 0.5 # the max size of input image for caffe
# #max_im_shrink = (0x7fffffff / 80.0 / (image.shape[0] * image.shape[1])) ** 0.5 # the max size of input image for caffe
# shrink = max_im_shrink if max_im_shrink < 1 else 1
det0 = detect_face([sess, image_input, bboxes_pred, cls_pred], image, shrink) # origin test
det1 = flip_test([sess, image_input, bboxes_pred, cls_pred], image, shrink) # flip test
[det2, det3] = multi_scale_test([sess, image_input, bboxes_pred, cls_pred], image, max_shrink) #multi-scale test
# merge all test results via bounding box voting
det4 = multi_scale_test_pyramid([sess, image_input, bboxes_pred, cls_pred], image, max_shrink)
det = np.row_stack((det0, det1, det2, det3, det4))
dets = bbox_vote(det)
f = open(os.path.join(save_path, event[0][0], im_name+'.txt'), 'w')
write_to_txt(f, dets, event, im_name)
f.close()
if num % FLAGS.log_every_n_steps == 0:
img_to_draw = draw_toolbox.bboxes_draw_on_img(image, (dets[:, 4] > 0.2).astype(np.int32), dets[:, 4], dets[:, :4], thickness=2)
#imsave(os.path.join('./dan_debug/{}.jpg').format(im_name), img_to_draw)
imsave(os.path.join(FLAGS.debug_dir, '{}.jpg'.format(im_name)), img_to_draw)
#imsave(os.path.join('./debug/{}_{}.jpg').format(index, num), draw_toolbox.absolute_bboxes_draw_on_img(image, (dets[:, 4]>0.1).astype(np.int32), dets[:, 4], dets[:, :4], thickness=2))
#break
sys.stdout.write('\r>> Predicting event:%d/%d num:%d/%d' % (index + 1, len_event, num + 1, len_files))
sys.stdout.flush()
sys.stdout.write('\n')
sys.stdout.flush()
#break
if __name__ == '__main__':
tf.logging.set_verbosity(tf.logging.INFO)
tf.gfile.MakeDirs(FLAGS.debug_dir)
tf.app.run()