-
Notifications
You must be signed in to change notification settings - Fork 360
/
equivalences.tex
1117 lines (975 loc) · 54.7 KB
/
equivalences.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
\chapter{Equivalences}
\label{cha:equivalences}
We now study in more detail the notion of \emph{equivalence of types} that was introduced briefly in \cref{sec:basics-equivalences}.
Specifically, we will give several different ways to define a type $\isequiv(f)$ having the properties mentioned there.
Recall that we wanted $\isequiv(f)$ to have the following properties, which we restate here:
\begin{enumerate}
\item $\qinv(f) \to \isequiv (f)$.\label{item:beb1}
\item $\isequiv (f) \to \qinv(f)$.\label{item:beb2}
\item $\isequiv(f)$ is a mere proposition.\label{item:beb3}
\end{enumerate}
Here $\qinv(f)$ denotes the type of quasi-inverses to $f$:
\begin{equation*}
\sm{g:B\to A} \big((f \circ g \htpy \idfunc[B]) \times (g\circ f \htpy \idfunc[A])\big).
\end{equation*}
By function extensionality, it follows that $\qinv(f)$ is equivalent to the type
\begin{equation*}
\sm{g:B\to A} \big((f \circ g = \idfunc[B]) \times (g\circ f = \idfunc[A])\big).
\end{equation*}
We will define three different types having properties~\ref{item:beb1}--\ref{item:beb3}, which we call
\begin{itemize}
\item half adjoint equivalences,
\item bi-invertible maps,
\index{function!bi-invertible}
and
\item contractible functions.
\end{itemize}
We will also show that all these types are equivalent.
These names are intentionally somewhat cumbersome, because after we know that they are all equivalent and have properties~\ref{item:beb1}--\ref{item:beb3}, we will revert to saying simply ``equivalence'' without needing to specify which particular definition we choose.
But for purposes of the comparisons in this chapter, we need different names for each definition.
Before we examine the different notions of equivalence, however, we give a little more explanation of why a different concept than quasi-invertibility is needed.
\section{Quasi-inverses}
\label{sec:quasi-inverses}
\index{quasi-inverse|(}%
We have said that $\qinv(f)$ is unsatisfactory because it is not a mere proposition, whereas we would rather that a given function could ``be an equivalence'' in at most one way.
However, we have given no evidence that $\qinv(f)$ is not a mere proposition.
In this section we exhibit a specific counterexample.
\begin{lem}\label{lem:qinv-autohtpy}
If $f:A\to B$ is such that $\qinv (f)$ is inhabited, then
\[\eqv{\qinv(f)}{\Parens{\prd{x:A}(x=x)}}.\]
\end{lem}
\begin{proof}
By assumption, $f$ is an equivalence; that is, we have $e:\isequiv(f)$ and so $(f,e):\eqv A B$.
By univalence, $\idtoeqv:(A=B) \to (\eqv A B)$ is an equivalence, so we may assume that $(f,e)$ is of the form $\idtoeqv(p)$ for some $p:A=B$.
Then by path induction, we may assume $p$ is $\refl{A}$, in which case $f$ is $\idfunc[A]$.
Thus we are reduced to proving $\eqv{\qinv(\idfunc[A])}{(\prd{x:A}(x=x))}$.
Now by definition we have
\[ \qinv(\idfunc[A]) \jdeq
\sm{g:A\to A} \big((g \htpy \idfunc[A]) \times (g \htpy \idfunc[A])\big).
\]
By function extensionality, this is equivalent to
\[ \sm{g:A\to A} \big((g = \idfunc[A]) \times (g = \idfunc[A])\big).
\]
And by \cref{ex:sigma-assoc}, this is equivalent to
\[ \sm{h:\sm{g:A\to A} (g = \idfunc[A])} (\proj1(h) = \idfunc[A])
\]
However, by \cref{thm:contr-paths}, $\sm{g:A\to A} (g = \idfunc[A])$ is contractible with center $(\idfunc[A],\refl{\idfunc[A]})$; therefore by \cref{thm:omit-contr} this type is equivalent to $\idfunc[A] = \idfunc[A]$.
And by function extensionality, $\idfunc[A] = \idfunc[A]$ is equivalent to $\prd{x:A} x=x$.
\end{proof}
\noindent
We remark that \cref{ex:qinv-autohtpy-no-univalence} asks for a proof of the above lemma which avoids univalence.
Thus, what we need is some $A$ which admits a nontrivial element of $\prd{x:A}(x=x)$.
Thinking of $A$ as a higher groupoid, an inhabitant of $\prd{x:A}(x=x)$ is a natural transformation\index{natural!transformation} from the identity functor of $A$ to itself.
Such transformations are said to form the \define{center of a category},
\index{center!of a category}%
\index{category!center of}%
since the naturality axiom requires that they commute with all morphisms.
Classically, if $A$ is simply a group regarded as a one-object groupoid, then this yields precisely its center in the usual group-theoretic sense.
This provides some motivation for the following.
\begin{lem}\label{lem:autohtpy}
Suppose we have a type $A$ with $a:A$ and $q:a=a$ such that
\begin{enumerate}
\item The type $a=a$ is a set.\label{item:autohtpy1}
\item For all $x:A$ we have $\brck{a=x}$.\label{item:autohtpy2}
\item For all $p:a=a$ we have $p\ct q = q \ct p$.\label{item:autohtpy3}
\end{enumerate}
Then there exists $f:\prd{x:A} (x=x)$ with $f(a)=q$.
\end{lem}
\begin{proof}
Let $g:\prd{x:A} \brck{a=x}$ be as given by~\ref{item:autohtpy2}. First we
observe that each type $\id[A]xy$ is a set. For since being a set is a mere
proposition, we may apply the induction principle of propositional truncation, and assume that $g(x)=\bproj
p$ and $g(y)=\bproj{p'}$ for $p:a=x$ and $p':a=y$. In this case, composing with
$p$ and $\opp{p'}$ yields an equivalence $\eqv{(x=y)}{(a=a)}$. But $(a=a)$ is
a set by~\ref{item:autohtpy1}, so $(x=y)$ is also a set.
Now, we would like to define $f$ by assigning to each $x$ the path $\opp{g(x)}
\ct q \ct g(x)$, but this does not work because $g(x)$ does not inhabit $a=x$
but rather $\brck{a=x}$, and the type $(x=x)$ may not be a mere proposition,
so we cannot use induction on propositional truncation. Instead we can apply
the technique mentioned in \cref{sec:unique-choice}: we characterize
uniquely the object we wish to construct. Let us define, for each $x:A$, the
type
\[ B(x) \defeq \sm{r:x=x} \prd{s:a=x} (r = \opp s \ct q\ct s).\]
We claim that $B(x)$ is a mere proposition for each $x:A$.
Since this claim is itself a mere proposition, we may again apply induction on
truncation and assume that $g(x) = \bproj p$ for some $p:a=x$.
Now suppose given $(r,h)$ and $(r',h')$ in $B(x)$; then we have
\[ h(p) \ct \opp{h'(p)} : r = r'. \]
It remains to show that $h$ is identified with $h'$ when transported along this equality, which by transport in identity types and function types (\cref{sec:compute-paths,sec:compute-pi}), reduces to showing
\[ h(s) = h(p) \ct \opp{h'(p)} \ct h'(s) \]
for any $s:a=x$.
But each side of this is an equality between elements of $(x=x)$, so it follows from our above observation that $(x=x)$ is a set.
Thus, each $B(x)$ is a mere proposition; we claim that $\prd{x:A} B(x)$.
Given $x:A$, we may now invoke the induction principle of propositional truncation to assume that $g(x) = \bproj p$ for $p:a=x$.
We define $r \defeq \opp p \ct q \ct p$; to inhabit $B(x)$ it remains to show that for any $s:a=x$ we have
$r = \opp s \ct q \ct s$.
Manipulating paths, this reduces to showing that $q\ct (p\ct \opp s) = (p\ct \opp s) \ct q$.
But this is just an instance of~\ref{item:autohtpy3}.
\end{proof}
\begin{thm}\label{thm:qinv-notprop}
There exist types $A$ and $B$ and a function $f:A\to B$ such that $\qinv(f)$ is not a mere proposition.
\end{thm}
\begin{proof}
It suffices to exhibit a type $X$ such that $\prd{x:X} (x=x)$ is not a mere proposition.
Define $X\defeq \sm{A:\type} \brck{\bool=A}$, as in the proof of \cref{thm:no-higher-ac}.
It will suffice to exhibit an $f:\prd{x:X} (x=x)$ which is unequal to $\lam{x} \refl{x}$.
Let $a \defeq (\bool,\bproj{\refl{\bool}}) : X$, and let $q:a=a$ be the path corresponding to the nonidentity equivalence $e:\eqv\bool\bool$ defined by $e(\bfalse)\defeq\btrue$ and $e(\btrue)\defeq\bfalse$.
We would like to apply \cref{lem:autohtpy} to build an $f$.
By definition of $X$, equalities in subset types (\cref{subsec:prop-subsets}), and univalence, we have $\eqv{(a=a)}{(\eqv{\bool}{\bool})}$, which is a set, so~\ref{item:autohtpy1} holds.
Similarly, by definition of $X$ and equalities in subset types we have~\ref{item:autohtpy2}.
Finally, \cref{ex:eqvboolbool} implies that every equivalence $\eqv\bool\bool$ is equal to either $\idfunc[\bool]$ or $e$, so we can show~\ref{item:autohtpy3} by a four-way case analysis.
Thus, we have $f:\prd{x:X} (x=x)$ such that $f(a) = q$.
Since $e$ is not equal to $\idfunc[\bool]$, $q$ is not equal to $\refl{a}$, and thus $f$ is not equal to $\lam{x} \refl{x}$.
Therefore, $\prd{x:X} (x=x)$ is not a mere proposition.
\end{proof}
More generally, \cref{lem:autohtpy} implies that any ``Eilenberg--Mac Lane space'' $K(G,1)$, where $G$ is a nontrivial abelian\index{group!abelian} group, will provide a counterexample; see \cref{cha:homotopy}.
The type $X$ we used turns out to be equivalent to $K(\mathbb{Z}_2,1)$.
In \cref{cha:hits} we will see that the circle $\Sn^1 = K(\mathbb{Z},1)$ is another easy-to-describe example.
We now move on to describing better notions of equivalence.
\index{quasi-inverse|)}%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\section{Half adjoint equivalences}
\label{sec:hae}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\index{equivalence!half adjoint|(defstyle}%
\index{half adjoint equivalence|(defstyle}%
\index{adjoint!equivalence!of types, half|(defstyle}%
In \cref{sec:quasi-inverses} we concluded that $\qinv(f)$ is equivalent to $\prd{x:A} (x=x)$ by discarding a contractible type.
Roughly, the type $\qinv(f)$ contains three data $g$, $\eta$, and $\epsilon$, of which two ($g$ and $\eta$) could together be seen to be contractible when $f$ is an equivalence.
The problem is that removing these data left one remaining ($\epsilon$).
In order to solve this problem, the idea is to add one \emph{additional} datum which, together with $\epsilon$, forms a contractible type.
\begin{defn}\label{defn:ishae}
A function $f:A\to B$ is a \define{half adjoint equivalence}
if there are $g:B\to A$ and homotopies $\eta: g \circ f \htpy \idfunc[A]$ and $\epsilon:f \circ g \htpy \idfunc[B]$ such that there exists a homotopy
\[\tau : \prd{x:A} \map{f}{\eta x} = \epsilon(fx).\]
\end{defn}
Thus we have a type $\ishae(f)$, defined to be
\begin{equation*}
\sm{g:B\to A}{\eta: g \circ f \htpy \idfunc[A]}{\epsilon:f \circ g \htpy \idfunc[B]} \prd{x:A} \map{f}{\eta x} = \epsilon(fx).
\end{equation*}
Note that in the above definition, the coherence\index{coherence} condition relating $\eta$ and $\epsilon$ only involves $f$.
We might consider instead an analogous coherence condition involving $g$:
\[\upsilon : \prd{y:B} \map{g}{\epsilon y} = \eta(gy)\]
and a resulting analogous definition $\ishae'(f)$.
Fortunately, it turns out each of the conditions implies the other one:
\begin{lem}\label{lem:coh-equiv}
For functions $f : A \to B$ and $g:B\to A$ and homotopies $\eta: g \circ f \htpy \idfunc[A]$ and $\epsilon:f \circ g \htpy \idfunc[B]$, the following conditions are logically equivalent:
\begin{itemize}
\item $\prd{x:A} \map{f}{\eta x} = \epsilon(fx)$
\item $\prd{y:B} \map{g}{\epsilon y} = \eta(gy)$
\end{itemize}
\end{lem}
\begin{proof}
It suffices to show one direction; the other one is obtained by replacing $A$, $f$, and $\eta$ by $B$, $g$, and $\epsilon$ respectively.
Let $\tau : \prd{x:A}\;\map{f}{\eta x} = \epsilon(fx)$.
Fix $y : B$.
Using naturality of $\epsilon$ and applying $g$, we get the following commuting diagram of paths:
\[\uppercurveobject{{ }}\lowercurveobject{{ }}\twocellhead{{ }}
\xymatrix@C=3pc{gfgfgy \ar@{=}^-{gfg(\epsilon y)}[r] \ar@{=}_{g(\epsilon (fgy))}[d] & gfgy \ar@{=}^{g(\epsilon y)}[d] \\ gfgy \ar@{=}_{g(\epsilon y)}[r] & gy
}\]
Using $\tau(gy)$ on the left side of the diagram gives us
\[\uppercurveobject{{ }}\lowercurveobject{{ }}\twocellhead{{ }}
\xymatrix@C=3pc{gfgfgy \ar@{=}^-{gfg(\epsilon y)}[r] \ar@{=}_{gf(\eta (gy))}[d] & gfgy \ar@{=}^{g(\epsilon y)}[d] \\ gfgy \ar@{=}_{g(\epsilon y)}[r] & gy
}\]
Using the commutativity of $\eta$ with $g \circ f$ (\cref{cor:hom-fg}), we have
\[\uppercurveobject{{ }}\lowercurveobject{{ }}\twocellhead{{ }}
\xymatrix@C=3pc{gfgfgy \ar@{=}^-{gfg(\epsilon y)}[r] \ar@{=}_{\eta (gfgy)}[d] & gfgy \ar@{=}^{g(\epsilon y)}[d] \\ gfgy \ar@{=}_{g(\epsilon y)}[r] & gy
}\]
However, by naturality of $\eta$ we also have
\[\uppercurveobject{{ }}\lowercurveobject{{ }}\twocellhead{{ }}
\xymatrix@C=3pc{gfgfgy \ar@{=}^-{gfg(\epsilon y)}[r] \ar@{=}_{\eta (gfgy)}[d] & gfgy \ar@{=}^{\eta(gy)}[d] \\ gfgy \ar@{=}_{g(\epsilon y)}[r] & gy
}\]
Thus, canceling all but the right-hand homotopy, we have $g(\epsilon y) = \eta(g y)$ as desired.
\end{proof}
However, it is important that we do not include \emph{both} $\tau$ and $\upsilon$ in the definition of $\ishae (f)$ (whence the name ``\emph{half} adjoint equivalence'').
If we did, then after canceling contractible types we would still have one remaining datum --- unless we added another higher coherence condition.
In general, we expect to get a well-behaved type if we cut off after an odd number of coherences.
Of course, it is obvious that $\ishae(f) \to\qinv(f)$: simply forget the coherence datum.
The other direction is a version of a standard argument from homotopy theory and category theory.
\begin{thm}\label{thm:equiv-iso-adj}
For any $f:A\to B$ we have $\qinv(f)\to\ishae(f)$.
\end{thm}
\begin{proof}
Suppose that $(g,\eta,\epsilon)$ is a quasi-inverse for $f$. We have to provide
a quadruple $(g',\eta',\epsilon',\tau)$ witnessing that $f$ is a half adjoint equivalence. To
define $g'$ and $\eta'$, we can just make the obvious choice by setting $g'
\defeq g$ and $\eta'\defeq \eta$. However, in the definition of $\epsilon'$ we
need start worrying about the construction of $\tau$, so we cannot just follow our nose
and take $\epsilon'$ to be $\epsilon$. Instead, we take
\begin{equation*}
\epsilon'(b) \defeq \opp{\epsilon(f(g(b)))}\ct (\ap{f}{\eta(g(b))}\ct \epsilon(b)).
\end{equation*}
Now we need to find
\begin{equation*}
\tau(a): \ap{f}{\eta(a)}=\opp{\epsilon(f(g(f(a))))}\ct (\ap{f}{\eta(g(f(a)))}\ct \epsilon(f(a))).
\end{equation*}
Note first that by \cref{cor:hom-fg}, we have
%$\eta(g(f(a)))\ct\eta(a)=\ap{g}{\ap{f}{\eta(a)}}\ct\eta(a)$ and hence it follows that
$\eta(g(f(a)))=\ap{g}{\ap{f}{\eta(a)}}$. Therefore, we can apply
\cref{lem:htpy-natural} to compute
\begin{align*}
\ap{f}{\eta(g(f(a)))}\ct \epsilon(f(a))
& = \ap{f}{\ap{g}{\ap{f}{\eta(a)}}}\ct \epsilon(f(a))\\
& = \epsilon(f(g(f(a))))\ct \ap{f}{\eta(a)}
\end{align*}
from which we get the desired path $\tau(a)$.
\end{proof}
Combining this with \cref{lem:coh-equiv} (or symmetrizing the proof), we also have $\qinv(f)\to\ishae'(f)$.
It remains to show that $\ishae(f)$ is a mere proposition.
For this, we will need to know that the fibers of an equivalence are contractible.
\begin{defn}\label{defn:homotopy-fiber}
The \define{fiber}
\indexdef{fiber}%
\indexsee{function!fiber of}{fiber}%
of a map $f:A\to B$ over a point $y:B$ is
\[ \hfib f y \defeq \sm{x:A} (f(x) = y).\]
\end{defn}
In homotopy theory, this is what would be called the \emph{homotopy fiber} of $f$.
The path lemmas in \cref{sec:computational} yield the following characterization of paths in fibers:
\begin{lem}\label{lem:hfib}
For any $f : A \to B$, $y : B$, and $(x,p),(x',p') : \hfib{f}{y}$, we have
\[ \big((x,p) = (x',p')\big) \eqvsym \Parens{\sm{\gamma : x = x'} f(\gamma) \ct p' = p} \qedhere\]
\end{lem}
\begin{thm}\label{thm:contr-hae}
If $f:A\to B$ is a half adjoint equivalence, then for any $y:B$ the fiber $\hfib f y$ is contractible.
\end{thm}
\begin{proof}
Let $(g,\eta,\epsilon,\tau) : \ishae(f)$, and fix $y : B$.
As our center of contraction for $\hfib{f}{y}$ we choose $(gy, \epsilon y)$.
Now take any $(x,p) : \hfib{f}{y}$; we want to construct a path from $(gy, \epsilon y)$ to $(x,p)$.
By \cref{lem:hfib}, it suffices to give a path $\gamma : \id{gy}{x}$ such that $\ap f\gamma \ct p = \epsilon y$.
We put $\gamma \defeq \opp{g(p)} \ct \eta x$.
Then we have
\begin{align*}
f(\gamma) \ct p & = \opp{fg(p)} \ct f (\eta x) \ct p \\
& = \opp{fg(p)} \ct \epsilon(fx) \ct p \\
& = \epsilon y
\end{align*}
where the second equality follows by $\tau x$ and the third equality is naturality of $\epsilon$.
\end{proof}
We now define the types which encapsulate contractible pairs of data.
The following types put together the quasi-inverse $g$ with one of the homotopies.
\begin{defn}\label{defn:linv-rinv}
Given a function $f:A\to B$, we define the types
\begin{align*}
\linv(f) &\defeq \sm{g:B\to A} (g\circ f\htpy \idfunc[A])\\
\rinv(f) &\defeq \sm{g:B\to A} (f\circ g\htpy \idfunc[B])
\end{align*}
of \define{left inverses}
\indexdef{left!inverse}%
\indexdef{inverse!left}%
and \define{right inverses}
\indexdef{right!inverse}%
\indexdef{inverse!right}%
to $f$, respectively.
We call $f$ \define{left invertible}
\indexdef{function!left invertible}%
\indexdef{function!right invertible}%
if $\linv(f)$ is inhabited, and similarly \define{right invertible}
\indexdef{left!invertible function}%
\indexdef{right!invertible function}%
if $\rinv(f)$ is inhabited.
\end{defn}
\begin{lem}\label{thm:equiv-compose-equiv}
If $f:A\to B$ has a quasi-inverse, then so do
\begin{align*}
(f\circ \blank) &: (C\to A) \to (C\to B)\\
(\blank\circ f) &: (B\to C) \to (A\to C).
\end{align*}
\end{lem}
\begin{proof}
If $g$ is a quasi-inverse of $f$, then $(g\circ \blank)$ and $(\blank\circ g)$ are quasi-inverses of $(f\circ \blank)$ and $(\blank\circ f)$ respectively.
\end{proof}
\begin{lem}\label{lem:inv-hprop}
If $f : A \to B$ has a quasi-inverse, then the types $\rinv(f)$ and $\linv(f)$ are contractible.
\end{lem}
\begin{proof}
By function extensionality, we have
\[\eqv{\linv(f)}{\sm{g:B\to A} (g\circ f = \idfunc[A])}.\]
But this is the fiber of $(\blank\circ f)$ over $\idfunc[A]$, and so
by \cref{thm:equiv-compose-equiv,thm:equiv-iso-adj,thm:contr-hae}, it is contractible.
Similarly, $\rinv(f)$ is equivalent to the fiber of $(f\circ \blank)$ over $\idfunc[B]$ and hence contractible.
\end{proof}
Next we define the types which put together the other homotopy with the additional coherence datum.\index{coherence}%
\begin{defn}\label{defn:lcoh-rcoh}
For $f : A \to B$, a left inverse $(g,\eta) : \linv(f)$, and a right inverse $(g,\epsilon) : \rinv(f)$, we denote
\begin{align*}
\lcoh{f}{g}{\eta} & \defeq \sm{\epsilon : f\circ g \htpy \idfunc[B]} \prd{y:B} g(\epsilon y) = \eta (gy), \\
\rcoh{f}{g}{\epsilon} & \defeq \sm{\eta : g\circ f \htpy \idfunc[A]} \prd{x:A} f(\eta x) = \epsilon (fx).
\end{align*}
\end{defn}
\begin{lem}\label{lem:coh-hfib}
For any $f,g,\epsilon,\eta$, we have
\begin{align*}
\lcoh{f}{g}{\eta} & \eqvsym {\prd{y:B} \id[\hfib{g}{gy}]{(fgy,\eta(gy))}{(y,\refl{gy})}}, \\
\rcoh{f}{g}{\epsilon} & \eqvsym {\prd{x:A} \id[\hfib{f}{fx}]{(gfx,\epsilon(fx))}{(x,\refl{fx})}}.
\end{align*}
\end{lem}
\begin{proof}
Using \cref{lem:hfib}.
\end{proof}
\begin{lem}\label{lem:coh-hprop}
If $f$ is a half adjoint equivalence, then for any $(g,\epsilon) : \rinv(f)$, the type $\rcoh{f}{g}{\epsilon}$ is contractible.
\end{lem}
\begin{proof}
By \cref{lem:coh-hfib} and the fact that dependent function types preserve contractible spaces, it suffices to show that for each $x:A$, the type $\id[\hfib{f}{fx}]{(gfx,\epsilon(fx))}{(x,\refl{fx})}$ is contractible.
But by \cref{thm:contr-hae}, $\hfib{f}{fx}$ is contractible, and any path space of a contractible space is itself contractible.
\end{proof}
\begin{thm}\label{thm:hae-hprop}
For any $f : A \to B$, the type $\ishae(f)$ is a mere proposition.
\end{thm}
\begin{proof}
By \cref{ex:prop-inhabcontr} it suffices to assume $f$ to be a half adjoint equivalence and show that $\ishae(f)$ is contractible.
Now by associativity of $\Sigma$ (\cref{ex:sigma-assoc}), the type $\ishae(f)$ is equivalent to
\[\sm{u : \rinv(f)} \rcoh{f}{\proj{1}(u)}{\proj{2}(u)}.\]
But by \cref{lem:inv-hprop,lem:coh-hprop} and the fact that $\Sigma$ preserves contractibility, the latter type is also contractible.
\end{proof}
Thus, we have shown that $\ishae(f)$ has all three desiderata for the type $\isequiv(f)$.
In the next two sections we consider a couple of other possibilities.
\index{equivalence!half adjoint|)}%
\index{half adjoint equivalence|)}%
\index{adjoint!equivalence!of types, half|)}%
\section{Bi-invertible maps}
\label{sec:biinv}
\index{function!bi-invertible|(defstyle}%
\index{bi-invertible function|(defstyle}%
\index{equivalence!as bi-invertible function|(defstyle}%
Using the language introduced in \cref{sec:hae}, we can restate the definition proposed in \cref{sec:basics-equivalences} as follows.
\begin{defn}\label{defn:biinv}
We say $f:A\to B$ is \define{bi-invertible}
if it has both a left inverse and a right inverse:
\[ \biinv (f) \defeq \linv(f) \times \rinv(f). \]
\end{defn}
In \cref{sec:basics-equivalences} we proved that $\qinv(f)\to\biinv(f)$ and $\biinv(f)\to\qinv(f)$.
What remains is the following.
\begin{thm}\label{thm:isprop-biinv}
For any $f:A\to B$, the type $\biinv(f)$ is a mere proposition.
\end{thm}
\begin{proof}
We may suppose $f$ to be bi-invertible and show that $\biinv(f)$ is contractible.
But since $\biinv(f)\to\qinv(f)$, by \cref{lem:inv-hprop} in this case both $\linv(f)$ and $\rinv(f)$ are contractible, and the product of contractible types is contractible.
\end{proof}
Note that this also fits the proposal made at the beginning of \cref{sec:hae}: we combine $g$ and $\eta$ into a contractible type and add an additional datum which combines with $\epsilon$ into a contractible type.
The difference is that instead of adding a \emph{higher} datum (a 2-dimensional path) to combine with $\epsilon$, we add a \emph{lower} one (a right inverse that is separate from the left inverse).
\begin{cor}\label{thm:equiv-biinv-isequiv}
For any $f:A\to B$ we have $\eqv{\biinv(f)}{\ishae(f)}$.
\end{cor}
\begin{proof}
We have $\biinv(f) \to \qinv(f) \to \ishae(f)$ and $\ishae(f) \to \qinv(f) \to \biinv(f)$.
Since both $\ishae(f)$ and $\biinv(f)$ are mere propositions, the equivalence follows from \cref{lem:equiv-iff-hprop}.
\end{proof}
\index{function!bi-invertible|)}%
\index{bi-invertible function|)}%
\index{equivalence!as bi-invertible function|)}%
\section{Contractible fibers}
\label{sec:contrf}
\index{function!contractible|(defstyle}%
\index{contractible!function|(defstyle}%
\index{equivalence!as contractible function|(defstyle}%
Note that our proofs about $\ishae(f)$ and $\biinv(f)$ made essential use of the fact that the fibers of an equivalence are contractible.
In fact, it turns out that this property is itself a sufficient definition of equivalence.
\begin{defn}[Contractible maps] \label{defn:equivalence}
A map $f:A\to B$ is \define{contractible}
if for all $y:B$, the fiber $\hfib f y$ is contractible.
\end{defn}
Thus, the type $\iscontr(f)$ is defined to be
\begin{align}
\iscontr(f) &\defeq \prd{y:B} \iscontr(\hfib f y)\label{eq:iscontrf}
% \\
% &\defeq \prd{y:B} \iscontr (\setof{x:A | f(x) = y}).
\end{align}
Note that in \cref{sec:contractibility} we defined what it means for a \emph{type} to be contractible.
Here we are defining what it means for a \emph{map} to be contractible.
Our terminology follows the general homotopy-theoretic practice of saying that a map has a certain property if all of its (homotopy) fibers have that property.
Thus, a type $A$ is contractible just when the map $A\to\unit$ is contractible.
From \cref{cha:hlevels} onwards we will also call contractible maps and types \emph{$(-2)$-truncated}.
We have already shown in \cref{thm:contr-hae} that $\ishae(f) \to \iscontr(f)$.
Conversely:
\begin{thm}\label{thm:lequiv-contr-hae}
For any $f:A\to B$ we have ${\iscontr(f)} \to {\ishae(f)}$.
\end{thm}
\begin{proof}
Let $P : \iscontr(f)$. We define an inverse mapping $g : B \to A$ by sending each $y : B$ to the center of contraction of the fiber at $y$:
\[ g(y) \defeq \proj{1}(\proj{1}(Py)). \]
We can thus define the homotopy $\epsilon$ by mapping $y$ to the witness that $g(y)$ indeed belongs to the fiber at $y$:
\[ \epsilon(y) \defeq \proj{2}(\proj{1}(P y)). \]
It remains to define $\eta$ and $\tau$. This of course amounts to giving an element of $\rcoh{f}{g}{\epsilon}$. By \cref{lem:coh-hfib}, this is the same as giving for each $x:A$ a path from $(gfx,\epsilon(fx))$ to $(x,\refl{fx})$ in the fiber of $f$ over $fx$. But this is easy: for any $x : A$, the type $\hfib{f}{fx}$
is contractible by assumption, hence such a path must exist. We can construct it explicitly as
\[\opp{\big(\proj{2}(P(fx))(gfx,\epsilon(fx))\big)} \ct \big(\proj{2}(P(fx)) (x,\refl{fx})\big). \qedhere \]
\end{proof}
It is also easy to see:
\begin{lem}\label{thm:contr-hprop}
For any $f$, the type $\iscontr(f)$ is a mere proposition.
\end{lem}
\begin{proof}
By \cref{thm:isprop-iscontr}, each type $\iscontr (\hfib f y)$ is a mere proposition.
Thus, by \cref{thm:isprop-forall}, so is~\eqref{eq:iscontrf}.
\end{proof}
\begin{thm}\label{thm:equiv-contr-hae}
For any $f:A\to B$ we have $\eqv{\iscontr(f)}{\ishae(f)}$.
\end{thm}
\begin{proof}
We have already established a logical equivalence ${\iscontr(f)} \Leftrightarrow {\ishae(f)}$, and both are mere propositions (\cref{thm:contr-hprop,thm:hae-hprop}).
Thus, \cref{lem:equiv-iff-hprop} applies.
\end{proof}
Usually, we prove that a function is an equivalence by exhibiting a quasi-inverse, but sometimes this definition is more convenient.
For instance, it implies that when proving a function to be an equivalence, we are free to assume that its codomain is inhabited.
\begin{cor}\label{thm:equiv-inhabcod}
If $f:A\to B$ is such that $B\to \isequiv(f)$, then $f$ is an equivalence.
\end{cor}
\begin{proof}
To show $f$ is an equivalence, it suffices to show that $\hfib f y$ is contractible for any $y:B$.
But if $e:B\to \isequiv(f)$, then given any such $y$ we have $e(y):\isequiv(f)$, so that $f$ is an equivalence and hence $\hfib f y$ is contractible, as desired.
\end{proof}
\index{function!contractible|)}%
\index{contractible!function|)}%
\index{equivalence!as contractible function|)}%
\section{On the definition of equivalences}
\label{sec:concluding-remarks}
\indexdef{equivalence}
We have shown that all three definitions of equivalence satisfy the three desirable properties and are pairwise equivalent:
\[ \iscontr(f) \eqvsym \ishae(f) \eqvsym \biinv(f). \]
(There are yet more possible definitions of equivalence, but we will stop with these three.
See \cref{ex:brck-qinv} and the exercises in this chapter for some more.)
Thus, we may choose any one of them as ``the'' definition of $\isequiv (f)$.
For definiteness, we choose to define
\[ \isequiv(f) \defeq \ishae(f).\]
\index{mathematics!formalized}%
This choice is advantageous for formalization, since $\ishae(f)$ contains the most directly useful data.
On the other hand, for other purposes, $\biinv(f)$ is often easier to deal with, since it contains no 2-dimensional paths and its two symmetrical halves can be treated independently.
However, for purposes of this book, the specific choice will make little difference.
In the rest of this chapter, we study some other properties and characterizations of equivalences.
\index{equivalence!properties of}%
\section{Surjections and embeddings}
\label{sec:mono-surj}
\index{set}
When $A$ and $B$ are sets and $f:A\to B$ is an equivalence, we also call it as \define{isomorphism}
\indexdef{isomorphism!of sets}%
or a \define{bijection}.
\indexdef{bijection}%
\indexsee{function!bijective}{bijection}%
(We avoid these words for types that are not sets, since in homotopy theory and higher category theory they often denote a stricter notion of ``sameness'' than homotopy equivalence.)
In set theory, a function is a bijection just when it is both injective and surjective.
The same is true in type theory, if we formulate these conditions appropriately.
For clarity, when dealing with types that are not sets, we will speak of \emph{embeddings} instead of injections.
\begin{defn}\label{defn:surj-emb}
Let $f:A\to B$.
\begin{enumerate}
\item We say $f$ is \define{surjective}
\indexsee{surjective!function}{function, surjective}%
\indexdef{function!surjective}%
(or a \define{surjection})
\indexsee{surjection}{function, surjective}%
if for every $b:B$ we have $\brck{\hfib f b}$.
\item We say $f$ is an \define{embedding}
\indexdef{function!embedding}%
\indexsee{embedding}{function, embedding}%
if for every $x,y:A$ the function $\apfunc f : (\id[A]xy) \to (\id[B]{f(x)}{f(y)})$ is an equivalence.
\end{enumerate}
\end{defn}
In other words, $f$ is surjective if every fiber of $f$ is merely inhabited, or equivalently if for all $b:B$ there merely exists an $a:A$ such that $f(a)=b$.
In traditional logical notation, $f$ is surjective if $\fall{b:B}\exis{a:A} (f(a)=b)$.
This must be distinguished from the stronger assertion that $\prd{b:B}\sm{a:A} (f(a)=b)$; if this holds we say that $f$ is a \define{split surjection}.
\indexsee{split!surjection}{function, split surjective}%
\indexsee{surjection!split}{function, split surjective}%
\indexsee{surjective!function!split}{function, split surjective}%
\indexdef{function!split surjective}%
(Since this latter type is equivalent to $\sm{g:B\to A}\prd{b:B} (f(g(b))=b)$, being a split surjection is the same as being a \emph{retraction} as defined in \cref{sec:contractibility}.)
\index{retraction}%
\index{function!retraction}%
The axiom of choice from \cref{sec:axiom-choice} says exactly that every surjection \emph{between sets} is split.
However, in the presence of the univalence axiom, it is simply false that \emph{all} surjections are split.
In \cref{thm:no-higher-ac} we constructed a type family $Y:X\to \type$ such that $\prd{x:X} \brck{Y(x)}$ but $\neg \prd{x:X} Y(x)$;
for any such family, the first projection $(\sm{x:X} Y(x)) \to X$ is a surjection that is not split.
If $A$ and $B$ are sets, then by \cref{lem:equiv-iff-hprop}, $f$ is an embedding just when
\begin{equation}
\prd{x,y:A} (\id[B]{f(x)}{f(y)}) \to (\id[A]xy).\label{eq:injective}
\end{equation}
In this case we say that $f$ is \define{injective},
\indexsee{injective function}{function, injective}%
\indexdef{function!injective}%
or an \define{injection}.
\indexsee{injection}{function, injective}%
We avoid these word for types that are not sets, because they might be interpreted as~\eqref{eq:injective}, which is an ill-behaved notion for non-sets.
It is also true that any function between sets is surjective if and only if it is an \emph{epimorphism} in a suitable sense, but this also fails for more general types, and surjectivity is generally the more important notion.
\begin{thm}\label{thm:mono-surj-equiv}
A function $f:A\to B$ is an equivalence if and only if it is both surjective and an embedding.
\end{thm}
\begin{proof}
If $f$ is an equivalence, then each $\hfib f b$ is contractible, hence so is $\brck{\hfib f b}$, so $f$ is surjective.
And we showed in \cref{thm:paths-respects-equiv} that any equivalence is an embedding.
Conversely, suppose $f$ is a surjective embedding.
Let $b:B$; we show that $\sm{x:A}(f(x)=b)$ is contractible.
Since $f$ is surjective, there merely exists an $a:A$ such that $f(a)=b$.
Thus, the fiber of $f$ over $b$ is inhabited; it remains to show it is a mere proposition.
For this, suppose given $x,y:A$ with $p:f(x)=b$ and $q:f(y)=b$.
Then since $\apfunc f$ is an equivalence, there exists $r:x=y$ with $\apfunc f (r) = p \ct \opp q$.
However, using the characterization of paths in $\Sigma$-types, the latter equality rearranges to $\trans{r}{p} = q$.
Thus, together with $r$ it exhibits $(x,p) = (y,q)$ in the fiber of $f$ over $b$.
\end{proof}
\begin{cor}
For any $f:A\to B$ we have
\[ \isequiv(f) \eqvsym (\mathsf{isEmbedding}(f) \times \mathsf{isSurjective}(f)).\]
\end{cor}
\begin{proof}
Being a surjection and an embedding are both mere propositions; now apply \cref{lem:equiv-iff-hprop}.
\end{proof}
Of course, this cannot be used as a definition of ``equivalence'', since the definition of embeddings refers to equivalences.
However, this characterization can still be useful; see \cref{sec:whitehead}.
We will generalize it in \cref{cha:hlevels}.
% \section{Fiberwise equivalences}
\section{Closure properties of equivalences}
\label{sec:equiv-closures}
\label{sec:fiberwise-equivalences}
\index{equivalence!properties of}%
% We end this chapter by observing some important closure properties of equivalences.
We have already seen in \cref{thm:equiv-eqrel} that equivalences are closed under composition.
Furthermore, we have:
\begin{thm}[The 2-out-of-3 property]\label{thm:two-out-of-three}
\index{2-out-of-3 property}%
Suppose $f:A\to B$ and $g:B\to C$.
If any two of $f$, $g$, and $g\circ f$ are equivalences, so is the third.
\end{thm}
\begin{proof}
If $g\circ f$ and $g$ are equivalences, then $\opp{(g\circ f)} \circ g$ is a quasi-inverse to $f$.
On the one hand, we have $\opp{(g\circ f)} \circ g \circ f \htpy \idfunc[A]$, while on the other we have
\begin{align*}
f \circ \opp{(g\circ f)} \circ g
&\htpy \opp g \circ g \circ f \circ \opp{(g\circ f)} \circ g\\
&\htpy \opp g \circ g\\
&\htpy \idfunc[B].
\end{align*}
Similarly, if $g\circ f$ and $f$ are equivalences, then $f\circ \opp{(g\circ f)}$ is a quasi-inverse to $g$.
\end{proof}
This is a standard closure condition on equivalences from homotopy theory.
Also well-known is that they are closed under retracts, in the following sense.
\index{retract!of a function|(defstyle}%
\begin{defn}\label{defn:retract}
A function $g:A\to B$ is said to be a \define{retract}
of a function $f:X\to Y$ if there is a diagram
\begin{equation*}
\xymatrix{
{A} \ar[r]^{s} \ar[d]_{g}
&
{X} \ar[r]^{r} \ar[d]_{f}
&
{A} \ar[d]^{g}
\\
{B} \ar[r]_{s'}
&
{Y} \ar[r]_{r'}
&
{B}
}
\end{equation*}
for which there are
\begin{enumerate}
\item a homotopy $R:r\circ s \htpy \idfunc[A]$.
\item a homotopy $R':r'\circ s' \htpy\idfunc[B]$.
\item a homotopy $L:f\circ s\htpy s'\circ g$.
\item a homotopy $K:g\circ r\htpy r'\circ f$.
\item for every $a:A$, a path $H(a)$ witnessing the commutativity of the square
\begin{equation*}
\xymatrix@C=3pc{
{g(r(s(a)))} \ar@{=}[r]^-{K(s(a))} \ar@{=}[d]_{\ap g{R(a)}}
&
{r'(f(s(a)))} \ar@{=}[d]^{\ap{r'}{L(a)}}
\\
{g(a)} \ar@{=}[r]_-{\opp{R'(g(a))}}
&
{r'(s'(g(a)))}
}
\end{equation*}
\end{enumerate}
\end{defn}
Recall that in \cref{sec:contractibility} we defined what it means for a type to be a retract of another.
This is a special case of the above definition where $B$ and $Y$ are $\unit$.
Conversely, just as with contractibility, retractions of maps induce retractions of their fibers.
\begin{lem}\label{lem:func_retract_to_fiber_retract}
If a function $g:A\to B$ is a retract of a function $f:X\to Y$, then $\hfib{g}b$ is a retract of $\hfib{f}{s'(b)}$
for every $b:B$, where $s':B\to Y$ is as in \cref{defn:retract}.
\end{lem}
\begin{proof}
Suppose that $g:A\to B$ is a retract of $f:X\to Y$. Then for any $b:B$ we have the functions
\begin{align*}
\varphi_b &:\hfiber{g}b\to\hfib{f}{s'(b)}, &
\varphi_b(a,p) & \defeq \pairr{s(a),L(a)\ct s'(p)},\\
\psi_b &:\hfib{f}{s'(b)}\to\hfib{g}b, &
\psi_b(x,q) &\defeq \pairr{r(x),K(x)\ct r'(q)\ct R'(b)}.
\end{align*}
Then we have $\psi_b(\varphi_b({a,p}))\equiv\pairr{r(s(a)),K(s(a))\ct r'(L(a)\ct s'(p))\ct R'(b)}$.
We claim $\psi_b$ is a retraction with section $\varphi_b$ for all $b:B$, which is to say that for all $(a,p):\hfib g b$ we have $\psi_b(\varphi_b({a,p}))= \pairr{a,p}$.
In other words, we want to show
\begin{equation*}
\prd{b:B}{a:A}{p:g(a)=b} \psi_b(\varphi_b({a,p}))= \pairr{a,p}.
\end{equation*}
By reordering the first two $\Pi$s and applying a version of \cref{thm:omit-contr}, this is equivalent to
\begin{equation*}
\prd{a:A}\psi_{g(a)}(\varphi_{g(a)}({a,\refl{g(a)}}))=\pairr{a,\refl{g(a)}}.
\end{equation*}
For any $a$, by \cref{thm:path-sigma}, this equality of pairs is equivalent to a pair of equalities. The first components are equal by $R(a):r(s(a))= a$, so we need only show
\begin{equation*}
\trans{R(a)}{K(s(a))\ct r'(L(a))\ct R'(g(a))} = \refl{g(a)}.
\end{equation*}
But this transportation computes as $\opp{g(R(a))}\ct K(s(a))\ct r'(L(a))\ct R'(g(a))$, so the required path is given by $H(a)$.
\end{proof}
\begin{thm}\label{thm:retract-equiv}
If $g$ is a retract of an equivalence $f$, then $g$ is also an equivalence.
\end{thm}
\begin{proof}
By \cref{lem:func_retract_to_fiber_retract}, every fiber of $g$ is a retract of a fiber of $f$.
Thus, by \cref{thm:retract-contr}, if the latter are all contractible, so are the former.
\end{proof}
\index{retract!of a function|)}%
\index{fibration}%
\index{total!space}%
Finally, we show that fiberwise equivalences can be characterized in terms of equivalences of total spaces.
To explain the terminology, recall from \cref{sec:fibrations} that a type family $P:A\to\type$ can be viewed as a fibration over $A$ with total space $\sm{x:A} P(x)$, the fibration being the projection $\proj1:\sm{x:A} P(x) \to A$.
From this point of view, given two type families $P,Q:A\to\type$, we may refer to a function $f:\prd{x:A} (P(x)\to Q(x))$ as a \define{fiberwise map} or a \define{fiberwise transformation}.
\indexsee{transformation!fiberwise}{fiberwise transformation}%
\indexsee{function!fiberwise}{fiberwise transformation}%
\index{fiberwise!transformation|(defstyle}%
\indexsee{fiberwise!map}{fiberwise transformation}%
\indexsee{map!fiberwise}{fiberwise transformation}
Such a map induces a function on total spaces:
\begin{defn}\label{defn:total-map}
Given type families $P,Q:A\to\type$ and a map $f:\prd{x:A} P(x)\to Q(x)$, we define
\begin{equation*}
\total f \defeq \lam{w}\pairr{\proj{1}w,f(\proj{1}w,\proj{2}w)} : \sm{x:A}P(x)\to\sm{x:A}Q(x).
\end{equation*}
\end{defn}
\begin{thm}\label{fibwise-fiber-total-fiber-equiv}
Suppose that $f$ is a fiberwise transformation between families $P$ and
$Q$ over a type $A$ and let $x:A$ and $v:Q(x)$. Then we have an equivalence
\begin{equation*}
\eqv{\hfib{\total{f}}{\pairr{x,v}}}{\hfib{f(x)}{v}}.
\end{equation*}
\end{thm}
\begin{proof}
We calculate:
\begin{align}
\hfib{\total{f}}{\pairr{x,v}}
& \jdeq \sm{w:\sm{x:A}P(x)}\pairr{\proj{1}w,f(\proj{1}w,\proj{2}w)}=\pairr{x,v}
\notag \\
& \eqv{}{} \sm{a:A}{u:P(a)}\pairr{a,f(a,u)}=\pairr{x,v}
\tag{by~\cref{ex:sigma-assoc}} \\
& \eqv{}{} \sm{a:A}{u:P(a)}{p:a=x}\trans{p}{f(a,u)}=v
\tag{by \cref{thm:path-sigma}} \\
& \eqv{}{} \sm{a:A}{p:a=x}{u:P(a)}\trans{p}{f(a,u)}=v
\notag \\
& \eqv{}{} \sm{u:P(x)}f(x,u)=v
\tag{$*$}\label{eq:uses-sum-over-paths} \\
& \jdeq \hfib{f(x)}{v}. \notag
\end{align}
The equivalence~\eqref{eq:uses-sum-over-paths} follows from \cref{thm:omit-contr,thm:contr-paths,ex:sigma-assoc}.
\end{proof}
We say that a fiberwise transformation $f:\prd{x:A} P(x)\to Q(x)$ is a \define{fiberwise equivalence}%
\indexdef{fiberwise!equivalence}%
\indexdef{equivalence!fiberwise}
if each $f(x):P(x) \to Q(x)$ is an equivalence.
\begin{thm}\label{thm:total-fiber-equiv}
Suppose that $f$ is a fiberwise transformation between families
$P$ and $Q$ over a type $A$.
Then $f$ is a fiberwise equivalence if and only if $\total{f}$ is an equivalence.
\end{thm}
\begin{proof}
Let $f$, $P$, $Q$ and $A$ be as in the statement of the theorem.
By \cref{fibwise-fiber-total-fiber-equiv} it follows for all
$x:A$ and $v:Q(x)$ that
$\hfib{\total{f}}{\pairr{x,v}}$ is contractible if and only if
$\hfib{f(x)}{v}$ is contractible.
Thus, $\hfib{\total{f}}{w}$ is contractible for all $w:\sm{x:A}Q(x)$ if and only if $\hfib{f(x)}{v}$ is contractible for all $x:A$ and $v:Q(x)$.
\end{proof}
\index{fiberwise!transformation|)}%
\section{The object classifier}
\label{sec:object-classification}
In type theory we have a basic notion of \emph{family of types}, namely a function $B:A\to\type$.
We have seen that such families behave somewhat like \emph{fibrations} in homotopy theory, with the fibration being the projection $\proj1:\sm{a:A} B(a) \to A$.
A basic fact in homotopy theory is that every map is equivalent to a fibration.
With univalence at our disposal, we can prove the same thing in type theory.
\begin{lem}\label{thm:fiber-of-a-fibration}
For any type family $B:A\to\type$, the fiber of $\proj1:\sm{x:A} B(x) \to A$ over $a:A$ is equivalent to $B(a)$:
\[ \eqv{\hfib{\proj1}{a}}{B(a)} \]
\end{lem}
\begin{proof}
We have
\begin{align*}
\hfib{\proj1}{a} &\defeq \sm{u:\sm{x:A} B(x)} \proj1(u)=a\\
&\eqvsym \sm{x:A}{b:B(x)} (x=a)\\
&\eqvsym \sm{x:A}{p:x=a} B(x)\\
&\eqvsym B(a)
\end{align*}
using the left universal property of identity types.
\end{proof}
\begin{lem}\label{thm:total-space-of-the-fibers}
For any function $f:A\to B$, we have $\eqv{A}{\sm{b:B}\hfib{f}{b}}$.
\end{lem}
\begin{proof}
We have
\begin{align*}
\sm{b:B}\hfib{f}{b} &\defeq \sm{b:B}{a:A} (f(a)=b)\\
&\eqvsym \sm{a:A}{b:B} (f(a)=b)\\
&\eqvsym A
\end{align*}
using the fact that $\sm{b:B} (f(a)=b)$ is contractible.
\end{proof}
\begin{thm}\label{thm:nobject-classifier-appetizer}
For any type $B$ there is an equivalence
\begin{equation*}
\chi:\Parens{\sm{A:\type} (A\to B)}\eqvsym (B\to\type).
\end{equation*}
\end{thm}
\begin{proof}
We have to construct quasi-inverses
\begin{align*}
\chi & : \Parens{\sm{A:\type} (A\to B)}\to B\to\type\\
\psi & : (B\to\type)\to\Parens{\sm{A:\type} (A\to B)}.
\end{align*}
We define $\chi$ by $\chi((A,f),b)\defeq\hfiber{f}b$, and $\psi$ by $\psi(P)\defeq\Pairr{(\sm{b:B} P(b)),\proj1}$.
Now we have to verify that $\chi\circ\psi\htpy\idfunc{}$ and that $\psi\circ\chi \htpy\idfunc{}$.
\begin{enumerate}
\item Let $P:B\to\type$.
By \cref{thm:fiber-of-a-fibration},
$\hfiber{\proj1}{b}\eqvsym P(b)$ for any $b:B$, so it follows immediately
that $P\htpy\chi(\psi(P))$.
\item Let $f:A\to B$ be a function. We have to find a path
\begin{equation*}
\Pairr{\tsm{b:B} \hfiber{f}b,\,\proj1}=\pairr{A,f}.
\end{equation*}
First note that by \cref{thm:total-space-of-the-fibers}, we have
$e:\sm{b:B} \hfiber{f}b\eqvsym A$ with $e(b,a,p)\defeq a$ and $e^{-1}(a)
\defeq(f(a),a,\refl{f(a)})$.
By \cref{thm:path-sigma}, it remains to show $\trans{(\ua(e))}{\proj1} = f$.
But by the computation rule for univalence and~\eqref{eq:transport-arrow}, we have $\trans{(\ua(e))}{\proj1} = \proj1\circ e^{-1}$, and the definition of $e^{-1}$ immediately yields $\proj1 \circ e^{-1} \jdeq f$.\qedhere
\end{enumerate}
\end{proof}
\noindent
\indexdef{object!classifier}%
\indexdef{classifier!object}%
\index{.infinity1-topos@$(\infty,1)$-topos}%
In particular, this implies that we have an \emph{object classifier} in the sense of higher topos theory.
Recall from \cref{def:pointedtype} that $\pointed\type$ denotes the type $\sm{A:\type} A$ of pointed types.
\begin{thm}\label{thm:object-classifier}
Let $f:A\to B$ be a function. Then the diagram
\begin{equation*}
\vcenter{\xymatrix{
A\ar[r]^-{\vartheta_f} \ar[d]_{f} &
\pointed{\type}\ar[d]^{\proj1}\\
B\ar[r]_{\chi_f} &
\type
}}
\end{equation*}
is a pullback\index{pullback} square (see \cref{ex:pullback}).
Here the function $\vartheta_f$ is defined by
\begin{equation*}
\lam{a} \pairr{\hfiber{f}{f(a)},\pairr{a,\refl{f(a)}}}.
\end{equation*}
\end{thm}
\begin{proof}
Note that we have the equivalences
\begin{align*}
A & \eqvsym \sm{b:B} \hfiber{f}b\\
& \eqvsym \sm{b:B}{X:\type}{p:\hfiber{f}b= X} X\\
& \eqvsym \sm{b:B}{X:\type}{x:X} \hfiber{f}b= X\\
& \eqvsym \sm{b:B}{Y:\pointed{\type}} \hfiber{f}b = \proj1 Y\\
& \jdeq B\times_{\type}\pointed{\type}
\end{align*}
which gives us a composite equivalence $e:A\eqvsym B\times_\type\pointed{\type}$.
We may display the action of this composite equivalence step by step by
\begin{align*}
a & \mapsto \pairr{f(a),\; \pairr{a,\refl{f(a)}}}\\
& \mapsto \pairr{f(a), \; \hfiber{f}{f(a)}, \; \refl{\hfiber{f}{f(a)}}, \; \pairr{a,\refl{f(a)}}}\\
& \mapsto \pairr{f(a), \; \hfiber{f}{f(a)}, \; \pairr{a,\refl{f(a)}}, \; \refl{\hfiber{f}{f(a)}}}.
\end{align*}
Therefore, we get homotopies $f\htpy\proj1\circ e$ and $\vartheta_f\htpy \proj2\circ e$.
\end{proof}
\section{Univalence implies function extensionality}
\label{sec:univalence-implies-funext}
\index{function extensionality!proof from univalence}%
In the last section of this chapter we include a proof that the univalence axiom implies function
extensionality. Thus, in this section we work \emph{without} the function extensionality axiom.
The proof consists of two steps. First we show
in \cref{uatowfe} that the univalence
axiom implies a weak form of function extensionality, defined in \cref{weakfunext} below. The
principle of weak function extensionality in turn implies the usual function extensionality,
and it does so without the univalence axiom (\cref{wfetofe}).
\index{univalence axiom}%
Let $\type$ be a universe; we will explicitly indicate where we assume that it is univalent.
\begin{defn}\label{weakfunext}
The \define{weak function extensionality principle}
\indexdef{function extensionality!weak}%
asserts that there is a function
\begin{equation*}
\Parens{\prd{x:A}\iscontr(P(x))} \to\iscontr\Parens{\prd{x:A}P(x)}
\end{equation*}
for any family $P:A\to\type$ of types over any type $A$.
\end{defn}
The following lemma is easy to prove using function extensionality; the point here is that it also follows from univalence without assuming function extensionality separately.
\begin{lem} \label{UA-eqv-hom-eqv}
Assuming $\type$ is univalent, for any $A,B,X:\type$ and any $e:\eqv{A}{B}$, there is an equivalence
\begin{equation*}
\eqv{(X\to A)}{(X\to B)}
\end{equation*}
of which the underlying map is given by post-composition with the underlying function of $e$.
\end{lem}
\begin{proof}
% Immediate by induction on $\eqv{}{}$ (see \cref{thm:equiv-induction}).
As in the proof of \cref{lem:qinv-autohtpy}, we may assume that $e = \idtoeqv(p)$ for some $p:A=B$.
Then by path induction, we may assume $p$ is $\refl{A}$, so that $e = \idfunc[A]$.
But in this case, post-composition with $e$ is the identity, hence an equivalence.
\end{proof}
\begin{cor}\label{contrfamtotalpostcompequiv}
Let $P:A\to\type$ be a family of contractible types, i.e.\ \narrowequation{\prd{x:A}\iscontr(P(x)).}
Then the projection $\proj{1}:(\sm{x:A}P(x))\to A$ is an equivalence. Assuming $\type$ is univalent, it follows immediately that post-composition with $\proj{1}$ gives an equivalence
\begin{equation*}
\alpha : \eqv{\Parens{A\to\sm{x:A}P(x)}}{(A\to A)}.
\end{equation*}
\end{cor}
\begin{proof}
By \cref{thm:fiber-of-a-fibration}, for $\proj{1}:\sm{x:A}P(X)\to A$ and $x:A$ we have an equivalence
\begin{equation*}
\eqv{\hfiber{\proj{1}}{x}}{P(x)}.
\end{equation*}
Therefore $\proj{1}$ is an equivalence whenever each $P(x)$ is contractible. The assertion is now a consequence of \cref{UA-eqv-hom-eqv}.
\end{proof}
In particular, the homotopy fiber of the above equivalence at $\idfunc[A]$ is contractible. Therefore, we can show that univalence implies weak function extensionality by showing that the dependent function type $\prd{x:A}P(x)$ is a retract of $\hfiber{\alpha}{\idfunc[A]}$.
\begin{thm}\label{uatowfe}
In a univalent universe $\type$, suppose that $P:A\to\type$ is a family of contractible types
and let $\alpha$ be the function of \cref{contrfamtotalpostcompequiv}.
Then $\prd{x:A}P(x)$ is a retract of $\hfiber{\alpha}{\idfunc[A]}$. As a consequence, $\prd{x:A}P(x)$ is contractible. In other words, the univalence axiom implies the weak function extensionality principle.
\end{thm}
\begin{proof}
Define the functions
\begin{align*}
\varphi &: (\tprd{x:A}P(x))\to\hfiber{\alpha}{\idfunc[A]},\\
\varphi(f) &\defeq (\lam{x} (x,f(x)),\refl{\idfunc[A]}),
\intertext{and}
\psi &: \hfiber{\alpha}{\idfunc[A]}\to \tprd{x:A}P(x), \\
\psi(g,p) &\defeq \lam{x} \trans {\happly (p,x)}{\proj{2} (g(x))}.
\end{align*}
Then $\psi(\varphi(f))=\lam{x} f(x)$, which is $f$, by the uniqueness principle for dependent function types.
\end{proof}
We now show that weak function extensionality implies the usual function extensionality.
Recall from~\eqref{eq:happly} the function $\happly (f,g) : (f = g)\to(f\htpy g)$ which
converts equality of functions to homotopy. In the proof that follows, the univalence
axiom is not used.
\begin{thm}\label{wfetofe}
\index{function extensionality}%
Weak function extensionality implies the function extensionality \cref{axiom:funext}.
\end{thm}
\begin{proof}
We want to show that
\begin{equation*}
\prd{A:\type}{P:A\to\type}{f,g:\prd{x:A}P(x)}\isequiv(\happly (f,g)).
\end{equation*}
Since a fiberwise map induces an equivalence on total spaces if and only if it is fiberwise an equivalence by \cref{thm:total-fiber-equiv}, it suffices to show that the function of type
\begin{equation*}
\Parens{\sm{g:\prd{x:A}P(x)}(f= g)} \to \sm{g:\prd{x:A}P(x)}(f\htpy g)
\end{equation*}
induced by $\lam{g:\prd{x:A}P(x)} \happly (f,g)$ is an equivalence.
Since the type on the left is contractible by \cref{thm:contr-paths}, it suffices to show that the type on the right:
\begin{equation}\label{eq:uatofesp}
\sm{g:\prd{x:A}P(x)}\prd{x:A}f(x)= g(x)
\end{equation}
is contractible.
Now \cref{thm:ttac} says that this is equivalent to
\begin{equation}\label{eq:uatofeps}