julia> using MultiResponseVarianceComponentModels, LinearAlgebra, Random
julia> Random.seed!(6789)
Random.TaskLocalRNG()
julia> n = 1_000; # n of observations
julia> d = 4; # n of responses
julia> p = 10; # n of covariates
julia> m = 5; # n of variance components
julia> X = rand(n, p);
julia> B = rand(p, d)
10×4 Matrix{Float64}:
+ 0.866192 0.739958 0.951693 0.716391
+ 0.157873 0.633772 0.916356 0.068644
+ 0.818581 0.333021 0.0713489 0.451072
+ 0.707496 0.924568 0.0636189 0.618679
+ 0.357756 0.173016 0.982384 0.54638
+ 0.722163 0.0683381 0.343516 0.616161
+ 0.441486 0.64316 0.862809 0.400984
+ 0.812486 0.275565 0.477624 0.482087
+ 0.889787 0.669932 0.103051 0.582507
+ 0.331484 0.989292 0.785077 0.456195
julia> V = [zeros(n, n) for _ in 1:m]; # kernel matrices
julia> Σ = [zeros(d, d) for _ in 1:m]; # variance components
julia> for i in 1:m
+ Vi = randn(n, n)
+ copy!(V[i], Vi' * Vi)
+ Σi = randn(d, d)
+ copy!(Σ[i], Σi' * Σi)
+ end
julia> Ω = zeros(n * d, n * d); # overall nd-by-nd covariance matrix Ω
julia> for i = 1:m
+ Ω += kron(Σ[i], V[i])
+ end
julia> Ωchol = cholesky(Ω);
julia> Y = X * B + reshape(Ωchol.L * randn(n * d), n, d)
1000×4 Matrix{Float64}:
+ -270.382 -66.0256 233.653 158.94
+ 168.935 354.423 14.8585 -54.193
+ 85.8007 117.902 -217.707 65.1394
+ -136.574 -42.6014 -234.087 75.6404
+ -190.312 -210.051 105.117 -10.0791
+ 153.414 187.179 20.691 -62.3589
+ 164.97 -22.4103 -13.6301 161.682
+ 21.9438 -184.643 231.526 -136.723
+ -284.549 79.7798 -37.1967 -136.943
+ -59.2492 -124.37 -160.587 112.235
+ ⋮
+ -82.4606 200.557 -4.16006 -47.2201
+ 170.0 95.8103 222.034 -179.011
+ 98.1247 -33.0932 -67.4875 -86.9752
+ -167.871 110.395 -184.76 -71.029
+ 111.644 -23.6517 113.328 -219.276
+ -77.2094 168.859 65.7808 22.939
+ 129.34 -155.123 -251.557 120.656
+ -359.121 -82.2576 -82.0063 10.8301
+ -77.7126 -90.7158 -79.5722 92.9695
In the case of heritability and genetic correlation analyses, one can use classic genetic relationship matrices (GRMs) for $\boldsymbol{V}_i$'s, which in turn can be constructed using SnpArrays.jl.
julia> model = MRVCModel(Y, X, V)
A multivariate response variance component model
+ * number of responses: 4
+ * number of observations: 1000
+ * number of fixed effects: 10
+ * number of variance components: 5
julia> @timev fit!(model)
[ Info: Running MM algorithm for ML estimation
+iter = 0, logl = -26845.09612499673
+iter = 1, logl = -25695.041826875506
+iter = 2, logl = -25293.37779878975
+iter = 3, logl = -25159.24906847003
+iter = 4, logl = -25107.52993220223
+iter = 5, logl = -25081.38428962063
+iter = 6, logl = -25064.352419795112
+iter = 7, logl = -25051.625744592016
+iter = 8, logl = -25041.61006910993
+iter = 9, logl = -25033.604422863456
+iter = 10, logl = -25027.18042662134
+iter = 11, logl = -25022.017854787307
+iter = 12, logl = -25017.85980986688
+iter = 13, logl = -25014.498019681763
+iter = 14, logl = -25011.76503965001
+iter = 15, logl = -25009.527835987446
+iter = 16, logl = -25007.68180780364
+iter = 17, logl = -25006.145330198324
+iter = 18, logl = -25004.854995838356
+iter = 19, logl = -25003.761633006412
+iter = 20, logl = -25002.827079011357
+iter = 21, logl = -25002.02162797271
+iter = 22, logl = -25001.322047241047
+iter = 23, logl = -25000.710054799467
+iter = 24, logl = -25000.171160151207
+iter = 25, logl = -24999.693786243588
+iter = 26, logl = -24999.26860570048
+iter = 27, logl = -24998.888038955105
+iter = 28, logl = -24998.545873977288
+iter = 29, logl = -24998.236977041215
+iter = 30, logl = -24997.95707160835
+iter = 31, logl = -24997.702568235134
+iter = 32, logl = -24997.470432811737
+iter = 33, logl = -24997.258083718323
+iter = 34, logl = -24997.063310912818
+iter = 35, logl = -24996.884211761542
+iter = 36, logl = -24996.719139735058
+iter = 37, logl = -24996.566663066376
+iter = 38, logl = -24996.425531184308
+iter = 39, logl = -24996.294647261133
+iter = 40, logl = -24996.173045607276
+iter = 41, logl = -24996.05987293569
+iter = 42, logl = -24995.95437274284
+iter = 43, logl = -24995.855872212444
+iter = 44, logl = -24995.7637711789
+iter = 45, logl = -24995.67753277965
+iter = 46, logl = -24995.596675504443
+iter = 47, logl = -24995.520766401234
+iter = 48, logl = -24995.449415250514
+iter = 49, logl = -24995.38226954833
+iter = 50, logl = -24995.31901017304
+iter = 51, logl = -24995.259347628595
+iter = 52, logl = -24995.203018777862
+iter = 53, logl = -24995.14978399378
+iter = 54, logl = -24995.09942466663
+iter = 55, logl = -24995.051741018295
+iter = 56, logl = -24995.006550180144
+iter = 57, logl = -24994.963684497296
+iter = 58, logl = -24994.922990031344
+iter = 59, logl = -24994.88432523246
+iter = 60, logl = -24994.84755976209
+iter = 61, logl = -24994.812573442905
+iter = 62, logl = -24994.779255325782
+iter = 63, logl = -24994.74750285241
+iter = 64, logl = -24994.717221108924
+iter = 65, logl = -24994.688322154096
+iter = 66, logl = -24994.660724417583
+iter = 67, logl = -24994.63435215651
+iter = 68, logl = -24994.609134967097
+iter = 69, logl = -24994.585007342
+[ Info: Updates converged!
+[ Info: Calculating standard errors
+ 60.329723 seconds (15.63 M allocations: 992.371 MiB, 0.28% gc time, 8.18% compilation time)
+elapsed time (ns): 60329722916
+gc time (ns): 168864917
+bytes allocated: 1040576188
+pool allocs: 15599543
+non-pool GC allocs: 26824
+malloc() calls: 930
+realloc() calls: 107
+free() calls: 335
+minor collections: 1
+full collections: 0
+Converged after 70 iterations.
Then variance components and mean effects estimates can be accessed through
julia> model.Σ
5-element Vector{Matrix{Float64}}:
+ [2.8964235833864374 -0.9547701186106777 1.6856925389781934 0.8185656173741515; -0.9547701186106778 7.474693619948036 -4.744935846247633 -0.601253052759175; 1.6856925389781932 -4.744935846247633 8.639624062398605 0.4049276157435974; 0.8185656173741512 -0.601253052759175 0.4049276157435973 1.0145168589537352]
+ [3.776260289140289 2.3919496497788035 -0.3666324933910243 -1.365148782876448; 2.391949649778804 1.9914356452751707 -0.2630505419731652 -1.5892702567044454; -0.36663249339102433 -0.26305054197316524 4.0912210911875855 -2.287177667967102; -1.365148782876448 -1.5892702567044454 -2.287177667967102 4.526163931034507]
+ [3.1157472905367367 -0.08262940589305556 -0.27318718635822953 0.4179078660737166; -0.08262940589305548 3.4556143634179275 -0.20341922639890309 0.6648870938984194; -0.27318718635822953 -0.20341922639890314 1.9155083377403541 0.49426216391703903; 0.41790786607371666 0.6648870938984194 0.49426216391703903 0.5435108874298807]
+ [3.6027030953820782 1.2366936673894326 0.3637181414535267 0.06851794976775202; 1.2366936673894326 0.9715515927327851 1.6405295499121633 0.5971896668720472; 0.3637181414535266 1.6405295499121637 5.828012183031251 0.9752007240509573; 0.06851794976775206 0.5971896668720472 0.9752007240509573 0.9502953338899155]
+ [5.669808082536949 -2.01083534935516 1.1222606709505223 1.4405860817195557; -2.0108353493551605 6.032248061565413 9.439926228569771 -2.150730923690082; 1.1222606709505227 9.439926228569773 19.179102992380216 -3.054827357292586; 1.4405860817195555 -2.150730923690082 -3.054827357292586 3.445429926626015]
julia> model.B
10×4 Matrix{Float64}:
+ 7.76641 0.0581691 30.0176 10.8424
+ -1.70871 17.0653 26.3436 5.24079
+ -4.99575 28.325 -20.9966 -13.1088
+ -10.2939 -6.00867 12.3106 -16.3959
+ -3.07093 0.733837 15.8845 1.17996
+ 14.1045 -3.92946 11.5408 11.2497
+ -1.47949 -8.30862 5.49722 -0.213233
+ 6.03975 5.27422 0.189634 3.90586
+ -0.632607 -14.288 -29.194 4.9749
+ 6.17054 -13.2489 -23.6247 -3.52297
julia> hcat(vec(B), vec(model.B))
40×2 Matrix{Float64}:
+ 0.866192 7.76641
+ 0.157873 -1.70871
+ 0.818581 -4.99575
+ 0.707496 -10.2939
+ 0.357756 -3.07093
+ 0.722163 14.1045
+ 0.441486 -1.47949
+ 0.812486 6.03975
+ 0.889787 -0.632607
+ 0.331484 6.17054
+ ⋮
+ 0.068644 5.24079
+ 0.451072 -13.1088
+ 0.618679 -16.3959
+ 0.54638 1.17996
+ 0.616161 11.2497
+ 0.400984 -0.213233
+ 0.482087 3.90586
+ 0.582507 4.9749
+ 0.456195 -3.52297
julia> reduce(hcat, [hcat(vec(Σ[i]), vec(model.Σ[i])) for i in 1:m])
16×10 Matrix{Float64}:
+ 2.59353 2.89642 3.32588 … 3.6027 5.37835 5.66981
+ -0.908817 -0.95477 2.21659 1.23669 -1.43756 -2.01084
+ 1.58682 1.68569 -0.0345923 0.363718 1.65263 1.12226
+ 0.365451 0.818566 -1.36959 0.0685179 0.983537 1.44059
+ -0.908817 -0.95477 2.21659 1.23669 -1.43756 -2.01084
+ 7.12022 7.47469 1.75764 … 0.971552 6.84955 6.03225
+ -4.72969 -4.74494 -0.0950186 1.64053 9.98583 9.43993
+ -0.430129 -0.601253 -1.55052 0.59719 -1.98954 -2.15073
+ 1.58682 1.68569 -0.0345923 0.363718 1.65263 1.12226
+ -4.72969 -4.74494 -0.0950186 1.64053 9.98583 9.43993
+ 6.22778 8.63962 4.06617 … 5.82801 19.2083 19.1791
+ 0.969228 0.404928 -2.51336 0.975201 -3.5885 -3.05483
+ 0.365451 0.818566 -1.36959 0.0685179 0.983537 1.44059
+ -0.430129 -0.601253 -1.55052 0.59719 -1.98954 -2.15073
+ 0.969228 0.404928 -2.51336 0.975201 -3.5885 -3.05483
+ 1.2446 1.01452 5.02933 … 0.950295 2.85342 3.44543
Sampling variance and covariance of these estimates are
julia> model.Σcov
50×50 Matrix{Float64}:
+ 0.47412 -0.00272341 0.108306 … -0.00114518 -0.000725468
+ -0.00272341 0.280366 -0.0353382 -0.000510353 0.000627446
+ 0.108306 -0.0353382 0.483991 -0.00663509 0.000814462
+ 0.0597015 -0.0241462 -0.00476179 -0.00287831 -0.00410306
+ -0.000531375 -0.000740352 -0.00227336 0.00175773 -0.000550985
+ -5.46266e-6 0.0615992 -0.0084444 … 0.00754037 -0.000713865
+ -7.80744e-5 0.0347709 -0.00356761 -0.00609519 0.00360991
+ 0.0240561 -0.0132044 0.213683 0.0166641 -0.000929684
+ 0.0133385 -0.00919492 0.0562126 -0.0423021 0.00471451
+ 0.00739022 -0.00597224 -0.0030313 0.00471978 -0.0236748
+ ⋮ ⋱
+ -0.00769785 -0.0406075 -0.012298 0.0234008 -0.0161668
+ -0.0133522 -0.0122384 -0.0861289 0.094258 -0.0224369
+ -0.00838137 0.00335528 0.00422692 0.0168207 0.0502388
+ -0.000645754 -0.00632483 -0.00175497 -0.0798787 0.0198685
+ -0.00102918 -0.00637199 -0.00825901 … -0.187875 0.0275525
+ -0.000640514 -0.00315513 -0.000651312 0.140072 -0.0624593
+ -0.00183032 -0.00321512 -0.0232591 -0.36789 0.0382077
+ -0.00114518 -0.000510353 -0.00663509 0.426481 -0.0867558
+ -0.000725468 0.000627446 0.000814462 -0.0867558 0.189954
julia> model.Bcov
40×40 Matrix{Float64}:
+ 157.174 -19.3776 -19.4223 … -0.257223 -1.24371 -1.90444
+ -19.3776 161.611 -22.5065 -1.3117 -1.42903 -1.33411
+ -19.4223 -22.5065 150.341 -1.38577 -2.56388 -1.25275
+ -14.6304 -12.8425 -19.2089 -2.29579 -2.03511 -1.00321
+ -11.6747 -13.9337 -12.4649 -0.198984 -1.44227 -2.31342
+ -24.2206 -18.4552 -7.96731 … -3.00702 -1.14626 -0.923721
+ -13.3431 -17.4951 -15.8672 -1.57057 -0.945035 -1.77244
+ -12.7248 -19.4206 -11.7579 13.2375 -1.25172 -1.08592
+ -17.2277 -19.1384 -19.5393 -1.22189 12.8571 -0.396249
+ -15.0949 -12.6969 -15.9363 -1.23333 -0.422978 12.5215
+ ⋮ ⋱
+ -2.12779 13.4419 -1.25447 -9.26816 -9.00194 -6.01701
+ -0.752161 -1.49914 13.5685 -5.62018 -9.24482 -8.16962
+ -0.737933 -0.925351 -1.71971 -11.7708 -8.59325 -10.0889
+ -1.49387 -1.2578 -1.04615 -5.98367 -12.911 -13.1438
+ -1.72094 -2.33376 -0.495492 … -9.81655 -5.37389 -8.16594
+ -1.53932 -0.763366 -2.22368 -9.36946 -7.53599 -10.4206
+ -0.257223 -1.3117 -1.38577 79.0721 -7.3782 -9.48116
+ -1.24371 -1.42903 -2.56388 -7.3782 75.6156 -0.921828
+ -1.90444 -1.33411 -1.25275 -9.48116 -0.921828 78.0356
Corresponding standard error of these estimates are
julia> sqrt.(diag(model.Σcov))
50-element Vector{Float64}:
+ 0.6885637727726415
+ 0.529495666135442
+ 0.6956949396229591
+ 0.33645040355906397
+ 0.8084217056989712
+ 0.7442584972630495
+ 0.3639694672208399
+ 1.3688056422005268
+ 0.4677057749056628
+ 0.3179680333750869
+ ⋮
+ 0.5524130983848243
+ 0.8823995615262973
+ 0.43111265513125097
+ 0.7402837878083752
+ 0.9231964895406697
+ 0.41384022887389565
+ 1.8662336914254827
+ 0.6530553700433331
+ 0.43583743574349515
julia> sqrt.(diag(model.Bcov))
40-element Vector{Float64}:
+ 12.536904651555659
+ 12.712633608569577
+ 12.26134556777767
+ 12.169443903108293
+ 12.663455285629615
+ 11.870615133041053
+ 12.528437624570504
+ 12.51912728097892
+ 12.39394332241073
+ 12.510940364508672
+ ⋮
+ 8.869558232699935
+ 8.568572559479021
+ 8.594848108237025
+ 8.973590296072445
+ 8.287660643177881
+ 8.80370479520269
+ 8.892247260593642
+ 8.695724537824539
+ 8.833773378129575
For REML estimation, you can instead:
julia> model = MRVCModel(Y, X, V; reml = true)
A multivariate response variance component model
+ * number of responses: 4
+ * number of observations: 1000
+ * number of fixed effects: 10
+ * number of variance components: 5
julia> @timev fit!(model)
[ Info: Running MM algorithm for REML estimation
+iter = 0, logl = -26597.537258425444
+iter = 1, logl = -25455.46070096719
+iter = 2, logl = -25062.15815081145
+iter = 3, logl = -24929.900271068564
+iter = 4, logl = -24878.96910611469
+iter = 5, logl = -24853.289345291265
+iter = 6, logl = -24836.614727024702
+iter = 7, logl = -24824.192330128142
+iter = 8, logl = -24814.4419685779
+iter = 9, logl = -24806.666946417736
+iter = 10, logl = -24800.441634611918
+iter = 11, logl = -24795.448814457188
+iter = 12, logl = -24791.434959065882
+iter = 13, logl = -24788.19527844777
+iter = 14, logl = -24785.565671601264
+iter = 15, logl = -24783.416144877603
+iter = 16, logl = -24781.644754384706
+iter = 17, logl = -24780.17213209585
+iter = 18, logl = -24778.936749268694
+iter = 19, logl = -24777.890976339873
+iter = 20, logl = -24776.997905413984
+iter = 21, logl = -24776.228846668713
+iter = 22, logl = -24775.561388912047
+iter = 23, logl = -24774.977914973028
+iter = 24, logl = -24774.46447416872
+iter = 25, logl = -24774.009929862073
+iter = 26, logl = -24773.605316168836
+iter = 27, logl = -24773.243352268248
+iter = 28, logl = -24772.918074830915
+iter = 29, logl = -24772.62455872271
+iter = 30, logl = -24772.358703657163
+iter = 31, logl = -24772.117070189604
+iter = 32, logl = -24771.896752736797
+iter = 33, logl = -24771.695280510114
+iter = 34, logl = -24771.51053960551
+iter = 35, logl = -24771.340711232333
+iter = 36, logl = -24771.18422234522
+iter = 37, logl = -24771.03970587292
+iter = 38, logl = -24770.90596843845
+iter = 39, logl = -24770.781963965892
+iter = 40, logl = -24770.66677195723
+iter = 41, logl = -24770.55957949347
+iter = 42, logl = -24770.459666236435
+iter = 43, logl = -24770.36639185783
+iter = 44, logl = -24770.27918545024
+iter = 45, logl = -24770.19753656323
+iter = 46, logl = -24770.120987582057
+iter = 47, logl = -24770.049127218048
+iter = 48, logl = -24769.981584929763
+iter = 49, logl = -24769.918026121268
+iter = 50, logl = -24769.85814799603
+iter = 51, logl = -24769.80167596465
+iter = 52, logl = -24769.74836052275
+iter = 53, logl = -24769.69797452873
+iter = 54, logl = -24769.65031082431
+iter = 55, logl = -24769.60518014765
+iter = 56, logl = -24769.56240929961
+iter = 57, logl = -24769.521839527268
+iter = 58, logl = -24769.48332509584
+iter = 59, logl = -24769.446732024946
+iter = 60, logl = -24769.41193696552
+iter = 61, logl = -24769.378826202505
+iter = 62, logl = -24769.34729476516
+iter = 63, logl = -24769.317245631824
+iter = 64, logl = -24769.288589020118
+iter = 65, logl = -24769.261241748998
+iter = 66, logl = -24769.235126666277
+iter = 67, logl = -24769.210172133422
+iter = 68, logl = -24769.186311562113
+[ Info: Updates converged!
+[ Info: Calculating standard errors
+ 52.528104 seconds (5.65 k allocations: 15.296 MiB, 0.01% compilation time)
+elapsed time (ns): 52528103542
+gc time (ns): 0
+bytes allocated: 16039272
+pool allocs: 5451
+non-pool GC allocs: 196
+malloc() calls: 7
+free() calls: 0
+minor collections: 0
+full collections: 0
+Converged after 69 iterations.
Variance components and mean effects estimates and their standard errors can be accessed through:
julia> model.Σ
5-element Vector{Matrix{Float64}}:
+ [2.9338500446816433 -0.9556577622339366 1.681944315565907 0.82097923904986; -0.9556577622339366 7.523441348688346 -4.724626084973893 -0.6045832212502729; 1.6819443155659073 -4.724626084973893 8.695787597891757 0.3975584198892441; 0.8209792390498599 -0.6045832212502729 0.397558419889244 1.0347822362989731]
+ [3.8129402322306207 2.3985158343212087 -0.3501640293021632 -1.361452145970671; 2.3985158343212087 2.0221274445059243 -0.26055606213368854 -1.595835001991699; -0.3501640293021632 -0.26055606213368826 4.164419136795955 -2.293103534511798; -1.3614521459706712 -1.595835001991699 -2.293103534511798 4.545249416292042]
+ [3.1531618876945027 -0.08093870739430353 -0.27534179496140915 0.4229588473703198; -0.08093870739430353 3.4956494601351706 -0.2073584361891652 0.6627085784490545; -0.27534179496140915 -0.20735843618916527 1.976397882530889 0.5036124449893044; 0.4229588473703198 0.6627085784490545 0.5036124449893044 0.5585662911372018]
+ [3.635801209038145 1.250204732685735 0.3660670881565596 0.07071405261549359; 1.2502047326857344 0.983771630227471 1.65237696435348 0.6004734046277869; 0.3660670881565597 1.6523769643534798 5.891632852330085 0.9668222589182407; 0.07071405261549359 0.6004734046277869 0.9668222589182407 0.9633632310978463]
+ [5.704238993549306 -2.02059232700069 1.131104825718486 1.4423754007372802; -2.0205923270006902 6.0631121455622194 9.453887154496428 -2.1594622671919748; 1.131104825718486 9.453887154496428 19.22805021076556 -3.065314862756238; 1.4423754007372802 -2.1594622671919748 -3.065314862756238 3.4673781742053422]
julia> model.B_reml
10×4 Matrix{Float64}:
+ 7.73978 0.0626092 29.9317 10.8401
+ -1.72827 17.0507 26.4331 5.24119
+ -4.99965 28.2624 -20.984 -13.0466
+ -10.2505 -5.98131 12.3119 -16.3662
+ -3.06092 0.788225 15.9509 1.1041
+ 14.1047 -3.98098 11.5646 11.254
+ -1.45427 -8.264 5.3133 -0.233005
+ 6.05113 5.20727 0.224061 3.95755
+ -0.679987 -14.213 -29.2147 4.91466
+ 6.17329 -13.234 -23.6101 -3.48756
julia> hcat(vec(B), vec(model.B_reml))
40×2 Matrix{Float64}:
+ 0.866192 7.73978
+ 0.157873 -1.72827
+ 0.818581 -4.99965
+ 0.707496 -10.2505
+ 0.357756 -3.06092
+ 0.722163 14.1047
+ 0.441486 -1.45427
+ 0.812486 6.05113
+ 0.889787 -0.679987
+ 0.331484 6.17329
+ ⋮
+ 0.068644 5.24119
+ 0.451072 -13.0466
+ 0.618679 -16.3662
+ 0.54638 1.1041
+ 0.616161 11.254
+ 0.400984 -0.233005
+ 0.482087 3.95755
+ 0.582507 4.91466
+ 0.456195 -3.48756
julia> reduce(hcat, [hcat(vec(Σ[i]), vec(model.Σ[i])) for i in 1:m])
16×10 Matrix{Float64}:
+ 2.59353 2.93385 3.32588 … 3.6358 5.37835 5.70424
+ -0.908817 -0.955658 2.21659 1.2502 -1.43756 -2.02059
+ 1.58682 1.68194 -0.0345923 0.366067 1.65263 1.1311
+ 0.365451 0.820979 -1.36959 0.0707141 0.983537 1.44238
+ -0.908817 -0.955658 2.21659 1.2502 -1.43756 -2.02059
+ 7.12022 7.52344 1.75764 … 0.983772 6.84955 6.06311
+ -4.72969 -4.72463 -0.0950186 1.65238 9.98583 9.45389
+ -0.430129 -0.604583 -1.55052 0.600473 -1.98954 -2.15946
+ 1.58682 1.68194 -0.0345923 0.366067 1.65263 1.1311
+ -4.72969 -4.72463 -0.0950186 1.65238 9.98583 9.45389
+ 6.22778 8.69579 4.06617 … 5.89163 19.2083 19.2281
+ 0.969228 0.397558 -2.51336 0.966822 -3.5885 -3.06531
+ 0.365451 0.820979 -1.36959 0.0707141 0.983537 1.44238
+ -0.430129 -0.604583 -1.55052 0.600473 -1.98954 -2.15946
+ 0.969228 0.397558 -2.51336 0.966822 -3.5885 -3.06531
+ 1.2446 1.03478 5.02933 … 0.963363 2.85342 3.46738
julia> model.Σcov
50×50 Matrix{Float64}:
+ 0.49577 -0.00244778 0.111934 … -0.00120099 -0.000758647
+ -0.00244778 0.29227 -0.0343723 -0.000533875 0.00067098
+ 0.111934 -0.0343723 0.505528 -0.00697209 0.000865612
+ 0.061864 -0.0253519 -0.00568503 -0.00302124 -0.00430738
+ -0.000533068 -0.000402843 -0.00233763 0.00189715 -0.000601019
+ 5.60305e-5 0.0635175 -0.00787928 … 0.00809095 -0.000772694
+ -4.0096e-5 0.0359266 -0.00341432 -0.00646355 0.00386484
+ 0.0245991 -0.0126117 0.220813 0.0177754 -0.000996935
+ 0.0136707 -0.00925492 0.0581185 -0.0446667 0.0050127
+ 0.00759217 -0.00622591 -0.00328015 0.00502603 -0.0249292
+ ⋮ ⋱
+ -0.00795163 -0.0428182 -0.0129844 0.0236794 -0.0165915
+ -0.0140199 -0.012921 -0.0907524 0.0966537 -0.0229699
+ -0.00877942 0.00359818 0.00449712 0.0176113 0.0517196
+ -0.000667567 -0.00656994 -0.0018067 -0.0818833 0.0205321
+ -0.00106014 -0.00669857 -0.00860587 … -0.193476 0.0283973
+ -0.000657675 -0.0033219 -0.000694922 0.144019 -0.0647023
+ -0.0019256 -0.00341227 -0.024527 -0.379053 0.0392726
+ -0.00120099 -0.000533875 -0.00697209 0.441745 -0.089645
+ -0.000758647 0.00067098 0.000865612 -0.089645 0.197463
julia> model.Bcov_reml
40×40 Matrix{Float64}:
+ 158.891 -19.5994 -19.6371 … -0.270249 -1.25569 -1.91414
+ -19.5994 163.384 -22.755 -1.32842 -1.44256 -1.34338
+ -19.6371 -22.755 151.987 -1.39442 -2.57948 -1.26777
+ -14.7913 -12.9925 -19.412 -2.31154 -2.05524 -1.01497
+ -11.8093 -14.0871 -12.5893 -0.204628 -1.46038 -2.33716
+ -24.4932 -18.6219 -8.06361 … -3.02449 -1.15581 -0.939094
+ -13.4737 -17.7017 -16.0374 -1.58474 -0.955878 -1.787
+ -12.8751 -19.6214 -11.8827 13.362 -1.26469 -1.10389
+ -17.4026 -19.3504 -19.7707 -1.23472 12.9793 -0.399421
+ -15.2551 -12.8481 -16.103 -1.24913 -0.426619 12.6487
+ ⋮ ⋱
+ -2.14636 13.5663 -1.27382 -9.38304 -9.11398 -6.09505
+ -0.765165 -1.51854 13.6867 -5.69139 -9.3694 -8.2553
+ -0.7517 -0.930899 -1.73573 -11.9126 -8.7008 -10.1908
+ -1.50467 -1.26692 -1.05451 -6.03856 -13.0461 -13.3113
+ -1.74002 -2.34396 -0.50063 … -9.94374 -5.4518 -8.24799
+ -1.54677 -0.78006 -2.23457 -9.47418 -7.6325 -10.5424
+ -0.270249 -1.32842 -1.39442 80.0047 -7.46137 -9.59586
+ -1.25569 -1.44256 -2.57948 -7.46137 76.5166 -0.942239
+ -1.91414 -1.34338 -1.26777 -9.59586 -0.942239 78.9404
julia> sqrt.(diag(model.Σcov))
50-element Vector{Float64}:
+ 0.7041093807634108
+ 0.5406201064474182
+ 0.7110051601946071
+ 0.3444911257855926
+ 0.8243533172952108
+ 0.7594961262777526
+ 0.37223105634402
+ 1.399043387180137
+ 0.47895976215151104
+ 0.32621217092743393
+ ⋮
+ 0.5632649585154991
+ 0.8978995129849152
+ 0.4392731438996924
+ 0.7554591568000877
+ 0.9384463145136606
+ 0.4220581137074655
+ 1.8966703307591692
+ 0.6646389147784445
+ 0.44436833540465226
julia> sqrt.(diag(model.Bcov_reml))
40-element Vector{Float64}:
+ 12.60518354143135
+ 12.782193317524683
+ 12.328308752465436
+ 12.23646139990698
+ 12.732636509969742
+ 11.934986834081903
+ 12.597350995825984
+ 12.586984559735523
+ 12.461643282682688
+ 12.578545874909784
+ ⋮
+ 8.923342209927311
+ 8.620236102433564
+ 8.645876453902996
+ 9.026071287093929
+ 8.337457783234893
+ 8.856449014354963
+ 8.944535606024061
+ 8.747376305559317
+ 8.884843293186195
Calculating standard errors can be memory-consuming, so you could instead forego such calculation via:
model = MRVCModel(Y, X, V; se = false) # or model = MRVCModel(Y, X, V; se = false, reml = true)
+@timev fit!(model)
You can also fit data with missing response. For example:
Y_miss = Matrix{Union{eltype(Y), Missing}}(missing, size(Y))
+copy!(Y_miss, Y)
+Y_miss[rand(1:length(Y_miss), n)] .= missing
+
+model = MRVCModel(Y_miss, X, V; se = false)
+@timev fit!(model)
When there are two variance components, you can accelerate fitting by avoiding large matrix inversion per iteration. To illustrate this, you can first simulate data as done previously but with larger $nd$ and $m = 2$.
julia> function simulate(n, d, p, m)
+ X = rand(n, p)
+ B = rand(p, d)
+ V = [zeros(n, n) for _ in 1:m]
+ Σ = [zeros(d, d) for _ in 1:m]
+ Ω = zeros(n * d, n * d)
+ for i in 1:m
+ Vi = randn(n, n)
+ mul!(V[i], transpose(Vi), Vi)
+ Σi = randn(d, d)
+ mul!(Σ[i], transpose(Σi), Σi)
+ kron_axpy!(Σ[i], V[i], Ω) # Ω = Σ[1]⊗V[1] + ... + Σ[m]⊗V[m]
+ end
+ Ωchol = cholesky(Ω)
+ Y = X * B + reshape(Ωchol.L * randn(n * d), n, d)
+ Y, X, V, B, Σ
+ end
simulate (generic function with 1 method)
julia> Y, X, V, B, Σ = simulate(5000, 4, 10, 2)
([349.6925410979359 97.16785228684566 224.42107027741739 -140.34648440718144; -280.08708850905515 121.99696938528912 291.6281581993771 -6.846001768944951; … ; -548.2638152432189 -138.9867854016224 165.14392374211317 -23.060532820908882; -430.5883532324437 -19.716621492057072 326.6227822295293 -58.13550088159137], [0.9221277504721419 0.39518286105049993 … 0.06270138790021751 0.997739716155004; 0.7122939351705581 0.9562437050691619 … 0.36859155672988797 0.9350171343957088; … ; 0.16876259557815643 0.4746184757013582 … 0.6693437348722951 0.8334698814347721; 0.2070536310319615 0.28200930113165246 … 0.2787822379761381 0.6772315839982946], [[5020.237833962983 151.28596690934853 … -105.03459026763699 112.94446090456054; 151.28596690934853 4998.5166994878045 … 1.0427422600613658 -43.50983290951208; … ; -105.03459026763699 1.0427422600613658 … 4869.238277472443 -4.700081453367206; 112.94446090456054 -43.50983290951208 … -4.700081453367206 5045.476681920826], [5014.608235889929 59.03322331129151 … -6.593479325359899 -68.2756587359377; 59.03322331129151 4971.447532001538 … -11.081784740947477 -47.668978305002206; … ; -6.593479325359899 -11.081784740947477 … 5039.79216251604 5.688510795412341; -68.2756587359377 -47.668978305002206 … 5.688510795412341 5025.660239417218]], [0.6255264905567314 0.5777925737265706 0.05168141094146861 0.5596066237597734; 0.17597036525499776 0.26877681752446925 0.4087414296943477 0.593506083228733; … ; 0.16458211947035895 0.7469905226911336 0.5646991244731385 0.34544628060488547; 0.3314750932375198 0.3991125956171754 0.5121170379644673 0.9003522250744518], [[11.818256102835363 2.6219095188820427 -4.874713153490494 0.6218526449017076; 2.6219095188820427 1.722853331225835 -1.2520900781473776 0.1296058205688085; -4.874713153490494 -1.2520900781473776 4.171736419731323 -0.21012586644541056; 0.6218526449017076 0.1296058205688085 -0.21012586644541056 0.05201440663338152], [6.831333870227899 2.195994547246214 -2.0178793576268306 -0.6270388077864709; 2.195994547246214 1.5443677565884601 0.21422986747085898 0.3950251301300546; -2.0178793576268306 0.21422986747085898 1.8725123076931875 0.43011866399546794; -0.6270388077864709 0.3950251301300546 0.43011866399546794 1.167702081443099]])
Then you can fit data as follows:
julia> model = MRTVCModel(Y, X, V)
A multivariate response two variance component model
+ * number of responses: 4
+ * number of observations: 5000
+ * number of fixed effects: 10
+ * number of variance components: 2
julia> @timev fit!(model)
[ Info: Running MM algorithm for ML estimation
+iter = 0, logl = -124717.72364382436
+iter = 1, logl = -122856.59872091345
+iter = 2, logl = -121970.2374785459
+iter = 3, logl = -121483.12235491295
+iter = 4, logl = -121174.53945389927
+iter = 5, logl = -120964.61513730836
+iter = 6, logl = -120818.31544841589
+iter = 7, logl = -120716.4548595128
+iter = 8, logl = -120646.46049426559
+iter = 9, logl = -120599.27053480603
+iter = 10, logl = -120568.14059152281
+iter = 11, logl = -120548.06202828637
+iter = 12, logl = -120535.38956726511
+iter = 13, logl = -120527.5478723189
+iter = 14, logl = -120522.77770458376
+iter = 15, logl = -120519.91676483194
+iter = 16, logl = -120518.2201096205
+iter = 17, logl = -120517.22253342139
+iter = 18, logl = -120516.63963691155
+iter = 19, logl = -120516.30046046266
+iter = 20, logl = -120516.1035635785
+iter = 21, logl = -120515.98934193165
+[ Info: Updates converged!
+[ Info: Calculating standard errors
+ 1.298970 seconds (1.49 M allocations: 102.942 MiB, 9.98% gc time, 92.42% compilation time)
+elapsed time (ns): 1298970250
+gc time (ns): 129624250
+bytes allocated: 107942164
+pool allocs: 1490900
+non-pool GC allocs: 2919
+malloc() calls: 56
+realloc() calls: 11
+free() calls: 77
+minor collections: 1
+full collections: 1
+Converged after 22 iterations.
julia> reduce(hcat, [hcat(vec(Σ[i]), vec(model.Σ[i])) for i in 1:2])
16×4 Matrix{Float64}:
+ 11.8183 11.6733 6.83133 6.81182
+ 2.62191 2.64236 2.19599 2.19778
+ -4.87471 -4.6384 -2.01788 -1.87052
+ 0.621853 0.642991 -0.627039 -0.69176
+ 2.62191 2.64236 2.19599 2.19778
+ 1.72285 1.72298 1.54437 1.61116
+ -1.25209 -1.2187 0.21423 0.32403
+ 0.129606 0.138002 0.395025 0.43114
+ -4.87471 -4.6384 -2.01788 -1.87052
+ -1.25209 -1.2187 0.21423 0.32403
+ 4.17174 4.12349 1.87251 1.85925
+ -0.210126 -0.215268 0.430119 0.503186
+ 0.621853 0.642991 -0.627039 -0.69176
+ 0.129606 0.138002 0.395025 0.43114
+ -0.210126 -0.215268 0.430119 0.503186
+ 0.0520144 0.0549335 1.1677 1.19821