Skip to content

Comparison of Puerto Rican slick and wild-type haired Holstein cattle transcriptomic profiles during mid-lactation

Notifications You must be signed in to change notification settings

IGBB/slick.rna-seq

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

8 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

SLICK Holstein mammary gland RNA-Seq methods

Bos taurus reference

Genome assembly: ARS-UCD1.3

  • Download using the NCBI datasets tool
    datasets download genome accession GCF_002263795.2 \
        --include gff3,rna,cds,protein,genome,seq-report \
        --filename $DIR/0-ref/GCF_002263795.2.zip
        
  • extract
    cd $DIR/0-ref
    unzip GCF_002263795.2.zip
        
  • create salmon database
    PREFIX=$DIR/0-ref/ncbi_dataset/data/GCF_002263795.2
    
    cat $PREFIX/rna.fna $PREFIX/GCF_002263795.2_ARS-UCD1.3_genomic.fna \
        > $DIR/0-ref/bovine.db.fa
    sed -n '/>/s/>\([^ ]*\).*/\1/p' $PREFIX/GCF_002263795.2_ARS-UCD1.3_genomic.fna \
        > $DIR/0-ref/decoys.txt
    
    $DIR/apps/salmon-1.9.0_linux_x86_64/bin/salmon index \
        -t $DIR/0-ref/bovine.db.fa \
        -i $DIR/0-ref/bovine.db \
        --decoys $DIR/0-ref/decoys.txt \
        -p 48
        

Raw data

LibraryForwardReverse
SLICK_2041SLICK_2041_1.fq.gzSLICK_2041_2.fq.gz
SLICK_2128SLICK_2128_1.fq.gzSLICK_2128_2.fq.gz
SLICK_2129SLICK_2129_1.fq.gzSLICK_2129_2.fq.gz
SLICK_2171SLICK_2171_1.fq.gzSLICK_2171_2.fq.gz
SLICK_2202SLICK_2202_1.fq.gzSLICK_2202_2.fq.gz
SLICK_2287SLICK_2287_1.fq.gzSLICK_2287_2.fq.gz
SLICK_466SLICK_466_1.fq.gzSLICK_466_2.fq.gz
WT_2058WT_2058_1.fq.gzWT_2058_2.fq.gz
WT_2068WT_2068_1.fq.gzWT_2068_2.fq.gz
WT_2089WT_2089_1.fq.gzWT_2089_2.fq.gz
WT_2116WT_2116_1.fq.gzWT_2116_2.fq.gz
WT_2179WT_2179_1.fq.gzWT_2179_2.fq.gz
WT_2226WT_2226_1.fq.gzWT_2226_2.fq.gz
WT_2273WT_2273_1.fq.gzWT_2273_2.fq.gz

Salmon

RAW=$DIR/1-raw/

for name in "${!data[@]}"; do
  readarray -t lib <<<"${data[$name]}"

  $DIR/apps/salmon-1.9.0_linux_x86_64/bin/salmon quant \
      -i $DIR/0-ref/bovine.db \
      -l A \
      -1 $RAW/${lib[0]} \
      -2 $RAW/${lib[1]} \
      --validateMappings \
      -o $DIR/2-salmon/$name \
      --threads 48
done
awk '/^Observed/ {obs=$2}
     /Mapping rate/ {rate=$NF}
     FNR == 1 {
         if(NR!=FNR) printf "%s\t%'"'"'d\t%0.2f%%\n", name, obs, rate;
         obs_all += obs;
         rate_all += rate;
         c++;
         name=FILENAME;
         sub(".*/2-salmon/", "", name);
         sub("/.*", "", name);
          }
     END {
         obs_all += obs;
         rate_all += rate;
         c++;

         printf "%s\t%'"'"'d\t%0.2f%%\n", name, obs, rate;
         printf "%s\t%'"'"'d\t%0.2f%%\n", "Average", obs_all/c, rate_all/c;
         }' OFS="\t" \
         $(printf "$DIR/2-salmon/%s/logs/salmon_quant.log " "${names[@]}")
LibraryObserved FragmentsMapping Rate
SLICK_204130,023,45484.85%
SLICK_212834,213,36889.53%
SLICK_212930,141,70790.01%
SLICK_217132,747,56681.12%
SLICK_220239,783,88888.73%
SLICK_228735,395,34790.13%
SLICK_46631,035,60887.05%
WT_205834,627,01286.17%
WT_206831,644,60288.24%
WT_208935,163,79483.39%
WT_211635,970,98089.30%
WT_217930,755,76490.12%
WT_222640,432,32789.07%
WT_227329,421,73589.04%
Average31,423,81087.62%

EdgeR

Load data

library(edgeR)
library(statmod)
library(tximport)
library(data.table)
library(tidyverse)
library(ggrepel)

meta.data <- data.frame(library=c("SLICK_2041", "SLICK_2128", "SLICK_2129",
                                  "SLICK_2171", "SLICK_2202", "SLICK_2287",
                                  "SLICK_466", "WT_2058", "WT_2068", "WT_2089",
                                  "WT_2116", "WT_2179", "WT_2226", "WT_2273"),
                        group=factor(rep(c("SL", "WT"), each=7), levels=c("WT", "SL")))

files <- file.path('2-salmon', meta.data$library,'quant.sf')
names(files) <- meta.data$library


design <- model.matrix(~ group, data=meta.data)
colnames(design) <- make.names(gsub("group", "", colnames(design)))

## Create tx2gene from gff
txdb <- fread("0-ref/ncbi_dataset/data/GCF_002263795.2/genomic.gff",
              skip=8, fill=T, header=F, sep="\t")[V3=='mRNA',] %>%
  dplyr::select('Attr'=V9) %>%
  as.data.frame %>%
  tibble::rowid_to_column(var='rowid') %>%
  separate_rows(Attr, sep=';') %>%
  separate(Attr, into=c('key', 'value'), sep='=') %>%
  spread(key, value) %>%
  mutate(GeneID = sub(".*GeneID:([^,]*).*", "\\1", Dbxref))

tx2gene <- dplyr::select(txdb, Name, GeneID)

txi <- tximport(files, type = "salmon", tx2gene = tx2gene)

Normalize counts, Filter Genes, and Estimate Dispersions

cts <- txi$counts
normMat <- txi$length

## Obtaining per-observation scaling factors for length, adjusted to avoid
## changing the magnitude of the counts.
normMat <- normMat/exp(rowMeans(log(normMat)))
normCts <- cts/normMat

 # Computing effective library sizes from scaled counts, to account for
# composition biases between samples.
eff.lib <- calcNormFactors(normCts) * colSums(normCts)

# Combining effective library sizes with the length factors, and calculating
# offsets for a log-link GLM.
normMat <- sweep(normMat, 2, eff.lib, "*")
normMat <- log(normMat)

# Creating a DGEList object for use in edgeR.
d <- DGEList(cts) %>% scaleOffset(normMat)

# filtering using the design information
keep <- filterByExpr(d, design)

y <- d[keep, ,keep.lib.sizes=F ] %>%
  calcNormFactors %>%
  estimateDisp(design, robust=T)


  • unique genes
    as.data.frame(txi$counts) %>%
      rownames_to_column('GeneID') %>%
    gather(-GeneID, key="library", value="count") %>%
      left_join(meta.data) %>%
      filter(count > 0) %>%
      group_by(GeneID, group) %>%
      count %>%
      spread(group, n) %>%
      filter(is.na(WT) | is.na(SL)) %>%
      gather(-GeneID, key="Type", value="Samples") %>%
      filter(Samples >= 4)
    
        
    GeneIDTypeSamples
    112441545WT6
    112447300WT5
    505979WT4
    505993WT4
    523830WT4
    535831WT4
    615310WT4
    786611WT5
    101905578SL4
    101906363SL4
    104968609SL5
    112449108SL4
    512850SL4
    516736SL5
    524709SL4
    526745SL4
    540297SL4
    613925SL5
    783189SL4
    790886SL4
  • Unique Gene Venn Diagram
    unique.gene.venn.plot <- as.data.frame(txi$counts) %>%
      rownames_to_column('gene') %>%
    gather(-gene, key="library", value="count") %>%
      left_join(meta.data) %>%
      filter(count > 0) %>%
      group_by(gene, group) %>%
      count %>%
      spread(group, n) %>%
      filter(is.na(WT) | is.na(SL)) %>%
      gather(-gene, key="type", value="count") %>%
      filter(!is.na(count)) %>%
      arrange(count) %>%
      mutate(type=fct_rev(type)) %>%
      ggplot(aes(type,1,fill=count)) +
      geom_col() +
      scale_x_discrete(breaks=c("WT", "SL"), labels=c("Wild-Type", "SLICK")) +
      scale_y_continuous(expand=c(0,0)) +
      scale_fill_distiller(palette = "PuRd") +
      guides(fill=guide_colorbar(title="Number of \nSamples")) +
      labs(y="Number of unique genes", x="Hair Coat Type") +
      theme_bw()+
      theme(
        panel.grid = element_blank(),
        axis.text = element_text(size=14),,
        axis.title = element_text(size=16),
        legend.text = element_text(size=14),
        legend.title = element_text(size=16)
        )
    
    unique.gene.venn.plot
        
  • Filtered/Surviving gene summary
    table(keep)
        
  • MDS
    mds.data <- plotMDS(y, plot=F)
    
    mds.plot <- cbind(meta.data, x=mds.data$x, y=mds.data$y) %>%
      mutate(library = sub('.*_', '', library)) %>%
      ggplot(aes(x,y, color=group, label=library)) +
      geom_point() +
      geom_text_repel(show.legend = F) +
      scale_color_manual(values=c( "#cc546e", "#4db598"), labels=c("Wild-Type", "SLICK")) +
      xlab(sprintf("Dimension 1 (%0.2f%%)", mds.data$var.explained[1]*100)) +
      ylab(sprintf("Dimension 2 (%0.2f%%)", mds.data$var.explained[2]*100)) +
      labs(color="Hair Coat Type") +
      theme_bw() +
      theme(legend.position = c(0.8,0.8),
            legend.background = element_rect(fill='white', color="grey"),
            panel.grid = element_blank()) +
        theme( legend.position = c(0.8,0.9),
        panel.grid.minor = element_blank(),
        axis.text = element_text(size=14),,
        axis.title = element_text(size=16),
        legend.text = element_text(size=14),
        legend.title = element_text(size=16)
        )
    mds.plot
        
  • Panel MDS/Venn
    library(cowplot)
    
    plot_grid(mds.plot, unique.gene.venn.plot, labels=c("A", "B"), rel_widths = c(3,2))
        
  • Mean-Difference (MD) plots
    par(mfrow = c(3,5))
    for(x in 1:14){
      plotMD(y, column=x, ylim=c(-8,8))
      abline(h=0, col="red", lty=2, lwd=2)
    }
        
  • Biological Coefficient of Variation (BCV)
    plotBCV(y)
        

DEG LRT test

library(ascii)
options(asciiType = "org", width = 80)

fit <- glmFit(y,design,robust=T)
lrt <- glmLRT(fit)

desc <- txdb %>%
  dplyr::select(GeneID, gene, product) %>%
  distinct(GeneID, .keep_all=T)

topTags(lrt, n=Inf) %>%
  as.data.frame %>%
  filter(PValue <= 0.01 & abs(logFC) > 0.6) %>%
  tibble::rownames_to_column("GeneID") %>%
  left_join(desc, by="GeneID")  %>%
  ascii(digits=4)
GeneIDlogFClogCPMLRPValueFDRgeneproduct
15133292.28341.246436.08380.00000.0000LOC513329major allergen Equ c 1%2C transcript variant X2
21001390921.37660.391616.29670.00010.2886GPR34G protein-coupled receptor 34%2C transcript variant X2
35119410.90353.135515.96110.00010.2886CEACAM19carcinoembryonic antigen related cell adhesion molecule 19
45191451.5596-0.561613.82510.00020.6717LOC519145beta-galactosidase-1-like protein 2%2C transcript variant X1
51003368250.95640.960211.58180.00070.9998TTLL10tubulin tyrosine ligase like 10%2C transcript variant X2
62808391.30170.486910.98320.00090.9998LHBluteinizing hormone beta polypeptide%2C transcript variant X1
71002982651.6411-0.064610.51040.00120.9998CPAMD8C3 and PZP like%2C alpha-2-macroglobulin domain containing 8%2C transcript variant X1
8783257-0.61262.576310.42990.00120.9998ABCB6ATP binding cassette subfamily B member 6
97884251.3738-0.247410.35930.00130.9998LOC788425aflatoxin B1 aldehyde reductase member 4%2C transcript variant X2
105055511.2709-1.003110.23270.00140.9998MYCBPAPMYCBP associated protein
115394670.98883.184210.06800.00150.9998PKDCCprotein kinase domain containing%2C cytoplasmic
122868581.23578.37899.71740.00180.9998PTGDSprostaglandin D2 synthase%2C transcript variant X2
135303461.2841-0.06059.52190.00200.9998ZNF621zinc finger protein 621
14519940-1.58761.50548.78120.00300.9998RDH16retinol dehydrogenase 16 (all-trans)%2C transcript variant X5
15100336551-0.62782.78158.72790.00310.9998ABCC9ATP binding cassette subfamily C member 9%2C transcript variant X3
16517459-2.93862.10898.64820.00330.9998GABRPgamma-aminobutyric acid type A receptor pi subunit%2C transcript variant X2
17286791-1.92811.75738.56540.00340.9998BDA20major allergen BDA20%2C transcript variant X1
18784038-5.44535.03218.53390.00350.9998LOC784038testis-specific H1 histone
19518047-1.9013-0.28028.48130.00360.9998SLCO1C1solute carrier organic anion transporter family member 1C1%2C transcript variant X2
205345780.72513.52138.45830.00360.9998LOC534578vascular cell adhesion molecule 1-like
21319095-0.86354.09008.38190.00380.9998ADCYAP1R1ADCYAP receptor type I%2C transcript variant X5
225241151.0508-0.31967.98950.00470.9998GABREgamma-aminobutyric acid type A receptor epsilon subunit
235345121.14631.01137.86590.00500.9998HMCN2hemicentin 2%2C transcript variant X1
244041291.4654-0.64327.78950.00530.9998DGAT2diacylglycerol O-acyltransferase 2
251002957411.37794.17457.70040.00550.9998ZG16Bzymogen granule protein 16B
267678950.69972.44667.65280.00570.9998WDR60WD repeat domain 60%2C transcript variant X4
27534505-1.82571.72497.65190.00570.9998CPXM2carboxypeptidase X%2C M14 family member 2
28785756-2.56503.65007.55310.00600.9998LOC785756androgen binding protein beta-like
295397330.72982.17187.49130.00620.9998RWDD2ARWD domain containing 2A%2C transcript variant X1
306134481.39190.78437.45640.00630.9998AK5adenylate kinase 5
315150250.66913.02657.28530.00700.9998BIN2bridging integrator 2
325231240.74620.70587.24660.00710.9998PSDpleckstrin and Sec7 domain containing%2C transcript variant X2
337833994.59814.02816.89080.00870.9998LOC783399major allergen Equ c 1-like%2C transcript variant X1
34615111-0.69524.05006.88170.00870.9998RNF150ring finger protein 150%2C transcript variant X5
35615896-2.14021.33796.81480.00900.9998SYCP3synaptonemal complex protein 3%2C transcript variant X2
365156530.69792.07866.71940.00950.9998SGSM1small G protein signaling modulator 1%2C transcript variant X1
375275721.40340.75996.64270.01000.9998GPR37L1G protein-coupled receptor 37 like 1
  • MD plot
    names <- dplyr::select(txdb, GeneID, gene) %>%
      distinct(GeneID, .keep_all=T)
    
    topTags(lrt, n=Inf)$table %>%
        as.data.frame %>%
        rownames_to_column("GeneID") %>%
        left_join(names) %>%
        mutate(Sig = (PValue <= 0.01 & abs(logFC) >= 0.6),
              Dir = ifelse(Sig, ifelse(logFC < 0, "Down", "Up"), "Not Significant"),
              label=if_else(Sig, gene, NA)) %>%
         arrange(Sig) %>%
    ggplot(aes(logCPM, logFC, color=Dir, size=Sig, label=label)) +
      geom_point() +
      geom_label_repel(size = 4, max.overlaps=100) +
      scale_size_manual(values=c(2/5, 1), guide=F) +
      scale_color_manual(values=c(Up="red", Down="blue", "grey"),
                         labels=c(Up="Up (25)", Down="Down (12)")) +
      xlab(expression("log"[2]*"CPM")) +
      ylab(expression("log"[2]*"FC")) +
      labs(color="Significant\n(p-value <= 0.01, |logFC| >= 0.6)") +
      theme_bw() +
      theme( legend.position = c(0.8,0.9),
        panel.grid.minor = element_blank(),
        axis.text = element_text(size=14),,
        axis.title = element_text(size=16),
        legend.text = element_text(size=14),
        legend.title = element_text(size=16)
        )
    
        
  • Volcano
    topTags(lrt, n=Inf)$table %>%
       mutate(Sig = (PValue <= 0.01 & abs(logFC) >= 0.6),
              Dir = ifelse(Sig, ifelse(logFC < 0, "Down", "Up"), "Not Significant")) %>%
         arrange(Sig) %>%
    ggplot(aes(logFC, -log(PValue,10), color=Dir, size=Sig)) + # -log10 conversion
      geom_point() +
      scale_size_manual(values=c(2/5, 1), guide=F) +
      scale_color_manual(values=c(Up="red", Down="blue", "grey")) +
      xlab(expression("log"[2]*"FC")) +
      ylab(expression("-log"[10]*"p-value")) +
      theme_minimal() +
      theme(legend.position = 'none')
        

KEGG

Download pathways and run fry

kg.list <- getGeneKEGGLinks("bta")
kg.sets <- split(kg.list$GeneID, kg.list$PathwayID)

kg.names <- getKEGGPathwayNames('bta')

kegg.fry <- fry(y, kg.sets, design)

Get pathways with p-value <= 0.05

kegg.fry %>%
  rownames_to_column('PathwayID') %>%
  mutate(PathwayID=sub('path:', '', PathwayID)) %>%
  left_join(kg.names, by="PathwayID") %>%
  filter(PValue <= 0.05) %>%
  mutate(Description = sub(' - Bos taurus \\(cow\\)', '', Description)) %>%
  ascii()
PathwayIDNGenesDirectionPValueFDRPValue.MixedFDR.MixedDescription
1bta0051521.00Up0.011.000.420.99Mannose type O-glycan biosynthesis
2bta0059042.00Up0.011.000.280.99Arachidonic acid metabolism
3bta0059116.00Up0.041.000.270.99Linoleic acid metabolism
4bta0034015.00Down0.041.000.310.99Histidine metabolism
bta00515
Mannose type O-glycan biosynthesis
library(pathview)
pathway="00590"
pathview(pathway.id=pathway,
         kegg.dir = '4-kegg/',
         gene.data = setNames(lrt$table$logFC, row.names(lrt$table)),
         species='bta')
    
bta00590
Arachidonic acid metabolism ./bta00590.pathview.png
bta00591
Linoleic acid metabolism ./bta00591.pathview.png
bta00340
Histidine metabolism ./bta00340.pathview.png

GO

library(org.Bt.eg.db)
library(GO.db)

go.db <- select(org.Bt.eg.db,
       keys=keys(org.Bt.eg.db, keytype = "ENTREZID"),
       columns="GO",
       keytype="ENTREZID") %>%
  filter(!is.na(GO))


go.sets <- split(go.db$ENTREZID, go.db$GO)

go.names <- select(GO.db,
                   keys=names(go.sets),
                   columns=c("GOID", "TERM", "ONTOLOGY"),
                   keytype="GOID")

go.fry <- fry(y, go.sets, design)

Get go terms with p-value <= 0.05

go.fry %>%
  rownames_to_column('GOID') %>%
  filter(PValue <= 0.05) %>%
  left_join(go.names, by='GOID') %>%
  dplyr::select(-ends_with('.Mixed')) %>%
  ascii()
GOIDNGenesDirectionPValueFDRTERMONTOLOGY
1GO:19035983.00Down0.001.00positive regulation of gap junction assemblyBP
2GO:00466281.00Down0.001.00positive regulation of insulin receptor signaling pathwayBP
3GO:00513026.00Up0.001.00regulation of cell divisionBP
4GO:00056435.00Down0.001.00nuclear poreCC
5GO:00053882.00Down0.001.00P-type calcium transporter activityMF
6GO:00082651.00Down0.001.00Mo-molybdopterin cofactor sulfurase activityMF
7GO:00435451.00Down0.001.00molybdopterin cofactor metabolic processBP
8GO:01028671.00Down0.001.00molybdenum cofactor sulfurtransferase activityMF
9GO:01407682.00Down0.001.00protein ADP-ribosyltransferase-substrate adaptor activityMF
10GO:00506932.00Down0.001.00LBD domain bindingMF
11GO:00301512.00Down0.001.00molybdenum ion bindingMF
12GO:00217401.00Down0.001.00principal sensory nucleus of trigeminal nerve developmentBP
13GO:00219601.00Down0.001.00anterior commissure morphogenesisBP
14GO:00443001.00Down0.001.00cerebellar mossy fiberCC
15GO:00604861.00Down0.001.00club cell differentiationBP
16GO:00605091.00Down0.001.00type I pneumocyte differentiationBP
17GO:00611411.00Down0.001.00lung ciliated cell differentiationBP
18GO:00716791.00Down0.001.00commissural neuron axon guidanceBP
19GO:20007911.00Down0.001.00negative regulation of mesenchymal cell proliferation involved in lung developmentBP
20GO:20007951.00Down0.001.00negative regulation of epithelial cell proliferation involved in lung morphogenesisBP
21GO:00199532.00Down0.011.00sexual reproductionBP
22GO:00066403.00Up0.011.00monoacylglycerol biosynthetic processBP
23GO:000750720.00Down0.011.00heart developmentBP
24GO:00970098.00Down0.011.00energy homeostasisBP
25GO:00028821.00Down0.011.00positive regulation of chronic inflammatory response to non-antigenic stimulusBP
26GO:00107531.00Down0.011.00positive regulation of cGMP-mediated signalingBP
27GO:00433061.00Down0.011.00positive regulation of mast cell degranulationBP
28GO:00453471.00Down0.011.00negative regulation of MHC class II biosynthetic processBP
29GO:00442811.00Down0.011.00small molecule metabolic processBP
30GO:00160351.00Up0.011.00zeta DNA polymerase complexCC
31GO:00427721.00Up0.011.00DNA damage response, signal transduction resulting in transcriptionBP
32GO:00708282.00Down0.011.00heterochromatin organizationBP
33GO:00343835.00Up0.011.00low-density lipoprotein particle clearanceBP
34GO:00312149.00Down0.011.00biomineral tissue developmentBP
35GO:00199344.00Down0.011.00cGMP-mediated signalingBP
36GO:00046226.00Up0.011.00lysophospholipase activityMF
37GO:000587915.00Up0.011.00axonemal microtubuleCC
38GO:00060712.00Up0.011.00glycerol metabolic processBP
39GO:00714047.00Up0.011.00cellular response to low-density lipoprotein particle stimulusBP
40GO:00046492.00Down0.021.00poly(ADP-ribose) glycohydrolase activityMF
41GO:00434053.00Down0.021.00regulation of MAP kinase activityBP
42GO:00055011.00Up0.021.00retinoid bindingMF
43GO:00700841.00Down0.021.00protein initiator methionine removalBP
44GO:00105721.00Up0.021.00positive regulation of platelet activationBP
45GO:00344781.00Up0.021.00phosphatidylglycerol catabolic processBP
46GO:000681610.00Down0.021.00calcium ion transportBP
47GO:00084091.00Up0.021.005’-3’ exonuclease activityMF
48GO:00343531.00Up0.021.00mRNA 5’-diphosphatase activityMF
49GO:00507791.00Up0.021.00RNA destabilizationBP
50GO:00710281.00Up0.021.00nuclear mRNA surveillanceBP
51GO:00973455.00Down0.021.00mitochondrial outer membrane permeabilizationBP
52GO:005126027.00Up0.021.00protein homooligomerizationBP
53GO:20002531.00Up0.021.00positive regulation of feeding behaviorBP
54GO:00198341.00Down0.021.00phospholipase A2 inhibitor activityMF
55GO:00341153.00Up0.021.00negative regulation of heterotypic cell-cell adhesionBP
56GO:00725571.00Up0.021.00IPAF inflammasome complexCC
57GO:00046934.00Down0.021.00cyclin-dependent protein serine/threonine kinase activityMF
58GO:00018333.00Down0.021.00inner cell mass cell proliferationBP
59GO:00488637.00Up0.021.00stem cell differentiationBP
60GO:00516511.00Down0.021.00maintenance of location in cellBP
61GO:19053791.00Down0.021.00beta-N-acetylhexosaminidase complexCC
62GO:00458361.00Up0.021.00positive regulation of meiotic nuclear divisionBP
63GO:00702011.00Up0.021.00regulation of establishment of protein localizationBP
64GO:00424201.00Down0.021.00dopamine catabolic processBP
65GO:00708732.00Up0.021.00regulation of glycogen metabolic processBP
66GO:00902672.00Up0.021.00positive regulation of mitotic cell cycle spindle assembly checkpointBP
67GO:00068201.00Down0.021.00anion transportBP
68GO:00038461.00Up0.021.002-acylglycerol O-acyltransferase activityMF
69GO:00353361.00Up0.021.00long-chain fatty-acyl-CoA metabolic processBP
70GO:00714001.00Up0.021.00cellular response to oleic acidBP
71GO:00970061.00Up0.021.00regulation of plasma lipoprotein particle levelsBP
72GO:00346384.00Up0.021.00phosphatidylcholine catabolic processBP
73GO:004698322.00Down0.021.00protein dimerization activityMF
74GO:00463393.00Up0.031.00diacylglycerol metabolic processBP
75GO:00305212.00Down0.031.00androgen receptor signaling pathwayBP
76GO:00083082.00Down0.031.00voltage-gated anion channel activityMF
77GO:19031462.00Down0.031.00regulation of autophagy of mitochondrionBP
78GO:000493014.00Up0.031.00G protein-coupled receptor activityMF
79GO:00550894.00Up0.031.00fatty acid homeostasisBP
80GO:00041442.00Up0.031.00diacylglycerol O-acyltransferase activityMF
81GO:00194322.00Up0.031.00triglyceride biosynthetic processBP
82GO:00502522.00Up0.031.00retinol O-fatty-acyltransferase activityMF
83GO:00504353.00Up0.031.00amyloid-beta metabolic processBP
84GO:01060742.00Down0.031.00aminoacyl-tRNA metabolism involved in translational fidelityBP
85GO:00326931.00Down0.031.00negative regulation of interleukin-10 productionBP
86GO:00170601.00Up0.031.003-galactosyl-N-acetylglucosaminide 4-alpha-L-fucosyltransferase activityMF
87GO:00506816.00Down0.031.00nuclear androgen receptor bindingMF
88GO:00438491.00Down0.031.00Ras palmitoyltransferase activityMF
89GO:00049991.00Down0.031.00vasoactive intestinal polypeptide receptor activityMF
90GO:00072602.00Down0.031.00tyrosine phosphorylation of STAT proteinBP
91GO:00314301.00Down0.031.00M bandCC
92GO:00308785.00Down0.031.00thyroid gland developmentBP
93GO:00486642.00Down0.031.00neuron fate determinationBP
94GO:00046672.00Up0.031.00prostaglandin-D synthase activityMF
95GO:01400071.00Up0.031.00KICSTOR complexCC
96GO:00017566.00Up0.031.00somitogenesisBP
97GO:00018376.00Down0.031.00epithelial to mesenchymal transitionBP
98GO:004275213.00Down0.031.00regulation of circadian rhythmBP
99GO:005102820.00Down0.031.00mRNA transportBP
100GO:00170832.00Up0.031.004-galactosyl-N-acetylglucosaminide 3-alpha-L-fucosyltransferase activityMF
101GO:00365051.00Up0.031.00prosaposin receptor activityMF
102GO:00009641.00Up0.041.00mitochondrial RNA 5’-end processingBP
103GO:00906461.00Up0.041.00mitochondrial tRNA processingBP
104GO:20012563.00Up0.041.00regulation of store-operated calcium entryBP
105GO:000028112.00Up0.041.00mitotic cytokinesisBP
106GO:00040173.00Up0.041.00adenylate kinase activityMF
107GO:00714552.00Down0.041.00cellular response to hyperoxiaBP
108GO:00066911.00Up0.041.00leukotriene metabolic processBP
109GO:00045531.00Down0.041.00hydrolase activity, hydrolyzing O-glycosyl compoundsMF
110GO:01402901.00Down0.041.00peptidyl-serine ADP-deribosylationBP
111GO:01402921.00Down0.041.00ADP-ribosylserine hydrolase activityMF
112GO:00431371.00Up0.041.00DNA replication, removal of RNA primerBP
113GO:00457222.00Down0.041.00positive regulation of gluconeogenesisBP
114GO:19029931.00Down0.041.00positive regulation of amyloid precursor protein catabolic processBP
115GO:00002443.00Down0.041.00spliceosomal tri-snRNP complex assemblyBP
116GO:00107621.00Up0.041.00regulation of fibroblast migrationBP
117GO:00319321.00Up0.041.00TORC2 complexCC
118GO:00382031.00Up0.041.00TORC2 signalingBP
119GO:00423823.00Up0.041.00paraspecklesCC
120GO:00437151.00Down0.041.002,3-diketo-5-methylthiopentyl-1-phosphate enolase activityMF
121GO:00437161.00Down0.041.002-hydroxy-3-keto-5-methylthiopentenyl-1-phosphate phosphatase activityMF
122GO:00438741.00Down0.041.00acireductone synthase activityMF
123GO:00347741.00Up0.041.00secretory granule lumenCC
124GO:00902771.00Up0.041.00positive regulation of peptide hormone secretionBP
125GO:19007381.00Up0.041.00positive regulation of phospholipase C-activating G protein-coupled receptor signaling pathwayBP
126GO:19038171.00Up0.041.00negative regulation of voltage-gated potassium channel activityBP
127GO:19051511.00Up0.041.00negative regulation of voltage-gated sodium channel activityBP
128GO:00343948.00Down0.041.00protein localization to cell surfaceBP
129GO:00045341.00Down0.041.005’-3’ exoribonuclease activityMF
130GO:00311241.00Down0.041.00mRNA 3’-end processingBP
131GO:00709322.00Up0.041.00histone H3 deacetylationBP
132GO:01060081.00Down0.041.002-oxoglutaramate amidase activityMF
133GO:19904593.00Up0.041.00transferrin receptor bindingMF
134GO:00316851.00Down0.041.00adenosine receptor bindingMF
135GO:00301559.00Down0.041.00regulation of cell adhesionBP
136GO:007037427.00Down0.041.00positive regulation of ERK1 and ERK2 cascadeBP
137GO:00107451.00Up0.041.00negative regulation of macrophage derived foam cell differentiationBP
138GO:00308531.00Up0.041.00negative regulation of granulocyte differentiationBP
139GO:00330341.00Up0.041.00positive regulation of myeloid cell apoptotic processBP
140GO:00336911.00Up0.041.00sialic acid bindingMF
141GO:00456501.00Up0.041.00negative regulation of macrophage differentiationBP
142GO:00459231.00Up0.041.00positive regulation of fatty acid metabolic processBP
143GO:00508051.00Up0.041.00negative regulation of synaptic transmissionBP
144GO:00903171.00Up0.041.00negative regulation of intracellular protein transportBP
145GO:01101131.00Up0.041.00positive regulation of lipid transporter activityBP
146GO:20002791.00Up0.041.00negative regulation of DNA biosynthetic processBP
147GO:20004671.00Up0.041.00positive regulation of glycogen (starch) synthase activityBP
148GO:20004781.00Up0.041.00positive regulation of metanephric podocyte developmentBP
149GO:20005341.00Up0.041.00positive regulation of renal albumin absorptionBP
150GO:20005841.00Up0.041.00negative regulation of platelet-derived growth factor receptor-alpha signaling pathwayBP
151GO:20005901.00Up0.041.00negative regulation of metanephric mesenchymal cell migrationBP
152GO:00040461.00Down0.041.00aminoacylase activityMF
153GO:00168111.00Down0.041.00hydrolase activity, acting on carbon-nitrogen (but not peptide) bonds, in linear amidesMF
154GO:00436041.00Down0.041.00amide biosynthetic processBP
155GO:00436051.00Down0.041.00cellular amide catabolic processBP
156GO:20002751.00Down0.041.00regulation of oxidative phosphorylation uncoupler activityBP
157GO:00108262.00Up0.041.00negative regulation of centrosome duplicationBP
158GO:00056661.00Up0.041.00RNA polymerase III complexCC
159GO:00343626.00Up0.041.00low-density lipoprotein particleCC
160GO:00511317.00Down0.041.00chaperone-mediated protein complex assemblyBP
161GO:00001234.00Down0.041.00histone acetyltransferase complexCC
162GO:00650102.00Down0.041.00extracellular membrane-bounded organelleCC
163GO:00216151.00Down0.051.00glossopharyngeal nerve morphogenesisBP
164GO:00486451.00Down0.051.00animal organ formationBP
165GO:00718371.00Down0.051.00HMG box domain bindingMF
166GO:19034321.00Down0.051.00regulation of TORC1 signalingBP
167GO:00447932.00Up0.051.00negative regulation by host of viral processBP
168GO:00362119.00Down0.051.00protein modification processBP
169GO:19054571.00Up0.051.00negative regulation of lymphoid progenitor cell differentiationBP
170GO:00439815.00Down0.051.00histone H4-K5 acetylationBP
171GO:00439825.00Down0.051.00histone H4-K8 acetylationBP
172GO:00060242.00Down0.051.00glycosaminoglycan biosynthetic processBP
173GO:00364772.00Up0.051.00somatodendritic compartmentCC
174GO:19039422.00Up0.051.00positive regulation of respiratory gaseous exchangeBP
175GO:005083011.00Up0.051.00defense response to Gram-positive bacteriumBP
176GO:00105242.00Down0.051.00positive regulation of calcium ion transport into cytosolBP
177GO:00602191.00Up0.051.00camera-type eye photoreceptor cell differentiationBP
178GO:00612981.00Up0.051.00retina vasculature development in camera-type eyeBP
179GO:00452441.00Down0.051.00succinate-CoA ligase complex (GDP-forming)CC
180GO:00341413.00Down0.051.00positive regulation of toll-like receptor 3 signaling pathwayBP
181GO:00615642.00Down0.051.00axon developmentBP

Session Info

sessionInfo()

EdgeR w/o Outlier

Load data

library(edgeR)
library(statmod)
library(tximport)
library(data.table)
library(tidyverse)
library(ggrepel)
library(ascii)
options(asciiType="org", width=80)
meta.data <- data.frame(library=c("SLICK_2041", "SLICK_2128", "SLICK_2129",
                                  "SLICK_2171", "SLICK_2202", "SLICK_2287",
                                  "SLICK_466", "WT_2058", "WT_2068", "WT_2089",
                                  "WT_2116", "WT_2226", "WT_2273"),
                        group=factor(rep(c("SL", "WT"), each=7, length.out = 13),
                                     levels=c("WT", "SL")))

files <- file.path('2-salmon', meta.data$library,'quant.sf')
names(files) <- meta.data$library


design <- model.matrix(~ group, data=meta.data)
colnames(design) <- make.names(gsub("group", "", colnames(design)))

## Create tx2gene from gff
txdb <- fread("0-ref/ncbi_dataset/data/GCF_002263795.2/genomic.gff",
              skip=8, fill=T, header=F, sep="\t")[V3=='mRNA',] %>%
  dplyr::select('Attr'=V9) %>%
  as.data.frame %>%
  tibble::rowid_to_column(var='rowid') %>%
  separate_rows(Attr, sep=';') %>%
  separate(Attr, into=c('key', 'value'), sep='=') %>%
  spread(key, value) %>%
  mutate(GeneID = sub(".*GeneID:([^,]*).*", "\\1", Dbxref))

tx2gene <- dplyr::select(txdb, Name, GeneID)

txi <- tximport(files, type = "salmon", tx2gene = tx2gene)

Normalize counts, Filter Genes, and Estimate Dispersions

cts <- txi$counts
normMat <- txi$length

## Obtaining per-observation scaling factors for length, adjusted to avoid
## changing the magnitude of the counts.
normMat <- normMat/exp(rowMeans(log(normMat)))
normCts <- cts/normMat

 # Computing effective library sizes from scaled counts, to account for
# composition biases between samples.
eff.lib <- calcNormFactors(normCts) * colSums(normCts)

# Combining effective library sizes with the length factors, and calculating
# offsets for a log-link GLM.
normMat <- sweep(normMat, 2, eff.lib, "*")
normMat <- log(normMat)

# Creating a DGEList object for use in edgeR.
d <- DGEList(cts) %>% scaleOffset(normMat)

# filtering using the design information
keep <- filterByExpr(d, design)

y <- d[keep, ,keep.lib.sizes=F ] %>%
  calcNormFactors %>%
  estimateDisp(design, robust=T)


  • unique genes
    as.data.frame(txi$counts) %>%
      rownames_to_column('GeneID') %>%
    gather(-GeneID, key="library", value="count") %>%
      left_join(meta.data, by='library') %>%
      filter(count > 0) %>%
      group_by(GeneID, group) %>%
      count %>%
      spread(group, n) %>%
      filter(is.na(WT) | is.na(SL)) %>%
      gather(-GeneID, key="Type", value="Samples") %>%
      filter(Samples >= 4) %>%
      ascii(digits=0)
    
        
    GeneIDTypeSamples
    1112441545WT6
    2112447300WT5
    3505979WT4
    4505993WT4
    5523830WT4
    6535831WT4
    7615310WT4
    8786611WT4
    9101902675SL4
    10101905578SL4
    11101906363SL4
    12104968609SL5
    13107132566SL6
    14112449108SL4
    15512850SL4
    16516736SL5
    17524709SL4
    18526745SL4
    19540297SL4
    20613925SL5
    21616105SL4
    22780786SL4
    23783189SL4
    24790886SL4
  • Unique Gene counts
    as.data.frame(txi$counts) %>%
      rownames_to_column('gene') %>%
      gather(-gene, key="library", value="count") %>%
      left_join(meta.data) %>%
      filter(count > 0) %>%
      group_by(gene, group) %>%
      count %>%
      spread(group, n) %>%
      filter(is.na(WT) | is.na(SL)) %>%
      gather(-gene, key="type", value="samples") %>%
      filter(!is.na(samples)) %>%
      group_by(type, samples) %>%
      count %>%
      group_by(type) %>%
      mutate(total=sum(n)) %>%
      spread(samples, n)
        
    GroupTotal123456
    SL592424119331231
    WT4013076719611
  • Unique Gene Venn Diagram
    unique.gene.venn.plot <- as.data.frame(txi$counts) %>%
      rownames_to_column('gene') %>%
    gather(-gene, key="library", value="count") %>%
      left_join(meta.data) %>%
      filter(count > 0) %>%
      group_by(gene, group) %>%
      count %>%
      spread(group, n) %>%
      filter(is.na(WT) | is.na(SL)) %>%
      gather(-gene, key="type", value="count") %>%
      filter(!is.na(count)) %>%
      arrange(count) %>%
      mutate(type=fct_rev(type)) %>%
      ggplot(aes(type,1,fill=count)) +
      geom_col() +
      scale_x_discrete(breaks=c("WT", "SL"), labels=c("Wild-Type", "SLICK")) +
      scale_y_continuous(expand=c(0,0)) +
      scale_fill_distiller(palette = "PuRd") +
      guides(fill=guide_colorbar(title="Number of \nSamples")) +
      labs(y="Number of unique genes", x="Hair Coat Type") +
      theme_bw()+
      theme(
        panel.grid = element_blank(),
        axis.text = element_text(size=14),,
        axis.title = element_text(size=16),
        legend.text = element_text(size=14),
        legend.title = element_text(size=16)
        )
    
    unique.gene.venn.plot
        
  • Filtered/Surviving gene summary
    table(keep)
        
  • MDS
    mds.data <- plotMDS(y, plot=F)
    
    mds.plot <- cbind(meta.data, x=mds.data$x, y=mds.data$y) %>%
      mutate(library = sub('.*_', '', library)) %>%
      ggplot(aes(x,y, color=group, label=library)) +
      geom_point() +
      geom_text_repel(show.legend = F) +
      scale_color_manual(values=c( "#cc546e", "#4db598"), labels=c("Wild-Type", "SLICK")) +
      xlab(sprintf("Dimension 1 (%0.2f%%)", mds.data$var.explained[1]*100)) +
      ylab(sprintf("Dimension 2 (%0.2f%%)", mds.data$var.explained[2]*100)) +
      labs(color="Hair Coat Type") +
      theme_bw() +
      theme(legend.position = c(0.8,0.8),
            legend.background = element_rect(fill='white', color="grey"),
            panel.grid = element_blank()) +
        theme( legend.position = c(0.8,0.9),
        panel.grid.minor = element_blank(),
        axis.text = element_text(size=14),,
        axis.title = element_text(size=16),
        legend.text = element_text(size=14),
        legend.title = element_text(size=16)
        )
    mds.plot
        
  • Panel MDS/Venn
    library(cowplot)
    
    plot_grid(mds.plot, unique.gene.venn.plot, labels=c("A", "B"), rel_widths = c(3,2))
        
  • Mean-Difference (MD) plots
    par(mfrow = c(3,5))
    for(x in 1:13){
      plotMD(y, column=x, ylim=c(-8,8))
      abline(h=0, col="red", lty=2, lwd=2)
    }
        
  • Biological Coefficient of Variation (BCV)
    plotBCV(y)
        

DEG LRT test

fit <- glmFit(y,design,robust=T)
lrt <- glmLRT(fit)

desc <- txdb %>%
  dplyr::select(GeneID, gene, product) %>%
  distinct(GeneID, .keep_all=T)

topTags(lrt, n=Inf) %>%
  as.data.frame %>%
  filter(PValue <= 0.01 & abs(logFC) > 0.6) %>%
  tibble::rownames_to_column("GeneID") %>%
  left_join(desc, by="GeneID")  %>%
  ascii(format=c('s', 'f', 'f','f', 'g', 'g', 's', 's'), digits=4)
GeneIDlogFClogCPMLRPValueFDRgeneproduct
15133292.26121.379131.05892.503e-080.0003398LOC513329major allergen Equ c 1%2C transcript variant X2
21001390921.22670.533015.19849.679e-050.5212GPR34G protein-coupled receptor 34%2C transcript variant X2
36181811.9566-0.981414.86960.00011520.5212GRIN2Dglutamate ionotropic receptor NMDA type subunit 2D
4281867-1.7706-0.809714.00970.00018190.6152INHBAinhibin subunit beta A%2C transcript variant X2
55119410.81503.259813.59640.00022660.6152CEACAM19carcinoembryonic antigen related cell adhesion molecule 19
62808391.45700.528612.62740.00038010.8599LHBluteinizing hormone beta polypeptide%2C transcript variant X1
7280863-1.19961.589512.20830.00047580.9225MOGmyelin oligodendrocyte glycoprotein%2C transcript variant X4
85191451.4944-0.448711.53540.00068281LOC519145beta-galactosidase-1-like protein 2%2C transcript variant X1
9784038-5.66815.202311.31730.00076791LOC784038testis-specific H1 histone
101071311640.62243.943511.24290.00079931ADAMTSL5ADAMTS like 5%2C transcript variant X4
11538700-2.2637-0.033610.57140.0011491BOLA-DRB2histocompatibility complex%2C class II%2C DR beta 2%2C transcript variant X2
12319095-0.96154.179210.29760.0013321ADCYAP1R1ADCYAP receptor type I%2C transcript variant X5
13783257-0.63242.627710.16050.0014351ABCB6ATP binding cassette subfamily B member 6
141003368250.92811.05899.82930.0017181TTLL10tubulin tyrosine ligase like 10%2C transcript variant X2
15785756-2.77803.80899.65650.0018871LOC785756androgen binding protein beta-like
16529491-0.66922.38379.52620.0020261PMS1PMS1 homolog 1%2C mismatch repair system component
177823481.3334-0.27569.33830.0022441LOC782348uncharacterized LOC782348%2C transcript variant X1
187678950.79182.50279.24740.0023581WDR60WD repeat domain 60%2C transcript variant X4
19286791-2.05791.85739.14370.0024961BDA20major allergen BDA20%2C transcript variant X1
207884251.3382-0.13998.73000.003131LOC788425aflatoxin B1 aldehyde reductase member 4%2C transcript variant X2
211002982651.50690.06798.64510.0032791CPAMD8C3 and PZP like%2C alpha-2-macroglobulin domain containing 8%2C transcript variant X1
22518047-2.0065-0.20848.64080.0032871SLCO1C1solute carrier organic anion transporter family member 1C1%2C transcript variant X2
23517459-3.05992.18578.56960.0034181GABRPgamma-aminobutyric acid type A receptor pi subunit%2C transcript variant X2
246153230.87815.23718.56910.0034191GRPgastrin releasing peptide
255397330.81052.20888.48300.0035851RWDD2ARWD domain containing 2A%2C transcript variant X1
26534505-1.96901.82828.45450.0036411CPXM2carboxypeptidase X%2C M14 family member 2
275055511.1909-0.89518.39570.0037611MYCBPAPMYCBP associated protein
28519940-1.63391.57248.34920.0038591RDH16retinol dehydrogenase 16 (all-trans)%2C transcript variant X5
295394670.95903.29068.25360.0040671PKDCCprotein kinase domain containing%2C cytoplasmic
30100271839-0.74761.38747.67710.0055931C23H6orf141chromosome 23 C6orf141 homolog
315303461.18750.06047.62190.0057661ZNF621zinc finger protein 621
322868581.11128.52047.60610.0058171PTGDSprostaglandin D2 synthase%2C transcript variant X2
33511042-1.11891.71527.57410.0059211NMNAT2nicotinamide nucleotide adenylyltransferase 2%2C transcript variant X4
34615896-2.30261.45507.47770.0062471SYCP3synaptonemal complex protein 3%2C transcript variant X2
355058300.93270.34667.34120.0067391APOMapolipoprotein M%2C transcript variant X2
362809481.01453.99687.16340.007441TTRtransthyretin
37524150-1.5792-1.62566.86930.0087691HOXA2homeobox A2
381003353651.2305-1.33446.86280.0088011STPG4sperm-tail PG-rich repeat containing 4%2C transcript variant X2
394041291.4760-0.55016.83210.0089531DGAT2diacylglycerol O-acyltransferase 2
40100848815-1.45785.56456.77330.0092531LOC100848815SLA class II histocompatibility antigen%2C DQ haplotype D alpha chain-like
415345780.68533.62406.73740.0094411LOC534578vascular cell adhesion molecule 1-like
425072800.90274.29386.70970.0095891TM4SF18transmembrane 4 L six family member 18%2C transcript variant X1
436134481.20150.93616.67440.0097811AK5adenylate kinase 5
  • MD plot
    names <- dplyr::select(txdb, GeneID, gene) %>%
      distinct(GeneID, .keep_all=T)
    
    topTags(lrt, n=Inf)$table %>%
        as.data.frame %>%
        rownames_to_column("GeneID") %>%
        left_join(names) %>%
        mutate(Sig = (PValue <= 0.01 & abs(logFC) >= 0.6),
              Dir = ifelse(Sig, ifelse(logFC < 0, "Down", "Up"), "Not Significant"),
              label=if_else(Sig, gene, NA)) %>%
         arrange(Sig) %>%
    ggplot(aes(logCPM, logFC, color=Dir, size=Sig, label=label)) +
      geom_point() +
      geom_label_repel(size = 4, max.overlaps=100) +
      scale_size_manual(values=c(2/5, 1), guide=F) +
      scale_color_manual(values=c(Up="red", Down="blue", "grey"),
                         labels=c(Up="Up (25)", Down="Down (12)")) +
      xlab(expression("log"[2]*"CPM")) +
      ylab(expression("log"[2]*"FC")) +
      labs(color="Significant\n(p-value <= 0.01, |logFC| >= 0.6)") +
      theme_bw() +
      theme( legend.position = c(0.8,0.9),
        panel.grid.minor = element_blank(),
        axis.text = element_text(size=14),,
        axis.title = element_text(size=16),
        legend.text = element_text(size=14),
        legend.title = element_text(size=16)
        )
    
        
  • Volcano
    topTags(lrt, n=Inf)$table %>%
       mutate(Sig = (PValue <= 0.01 & abs(logFC) >= 0.6),
              Dir = ifelse(Sig, ifelse(logFC < 0, "Down", "Up"), "Not Significant")) %>%
         arrange(Sig) %>%
    ggplot(aes(logFC, -log(PValue,10), color=Dir, size=Sig)) + # -log10 conversion
      geom_point() +
      scale_size_manual(values=c(2/5, 1), guide=F) +
      scale_color_manual(values=c(Up="red", Down="blue", "grey")) +
      xlab(expression("log"[2]*"FC")) +
      ylab(expression("-log"[10]*"p-value")) +
      theme_minimal() +
      theme(legend.position = 'none')
        

KEGG

Download pathways and run fry

kg.list <- getGeneKEGGLinks("bta")
kg.sets <- split(kg.list$GeneID, kg.list$PathwayID)

kg.names <- getKEGGPathwayNames('bta')

kegg.fry <- fry(y, kg.sets, design)

Get pathways with p-value <= 0.05

kegg.fry %>%
  rownames_to_column('PathwayID') %>%
  mutate(PathwayID=sub('path:', '', PathwayID)) %>%
  left_join(kg.names, by="PathwayID") %>%
  filter(PValue <= 0.05 | PValue.Mixed <= 0.05) %>%
  mutate(Description = sub(' - Bos taurus \\(cow\\)', '', Description)) %>%
  ascii(format=c('s', 'd', 's', 'g' ,'g' ,'g' , 'g', 's'))
PathwayIDNGenesDirectionPValueFDRPValue.MixedFDR.MixedDescription
1bta0051521Up0.000570.20.310.93Mannose type O-glycan biosynthesis
2bta0056267Down0.0120.990.670.93Inositol phosphate metabolism
3bta0407086Down0.0140.990.620.93Phosphatidylinositol signaling system
4bta0059044Up0.0210.990.480.93Arachidonic acid metabolism
5bta04530146Down0.0270.990.530.93Tight junction
6bta0521167Down0.0410.990.720.93Renal cell carcinoma
7bta0031057Down0.0480.990.850.94Lysine degradation
8bta0401272Down0.050.990.690.93ErbB signaling pathway
9bta050339Up0.240.990.00450.93Nicotine addiction
bta00515
Mannose type O-glycan biosynthesis
library(pathview)
pathview(pathway.id=pathway,
         kegg.dir = '4-kegg/',
         gene.data = setNames(lrt$table$logFC, row.names(lrt$table)),
         species='bta')
    
bta00562
Inositol phosphate metabolism

./bta00562.pathview.png

bta04070
Phosphatidylinositol signaling system
bta04530
Tight junction

./bta04530.pathview.png

bta04012
ErbB signaling pathway

./bta04012.pathview.png

-

topTags(lrt, n=Inf) %>%
  as.data.frame %>%
  tibble::rownames_to_column("GeneID") %>%
  filter(GeneID %in% kg.sets[['path:bta00590']]) %>%
  left_join(desc, by="GeneID")  %>%
  ascii(format=c('s', 'f', 'f','f', 'g', 'g', 's', 's'), digits=4)

GO

library(org.Bt.eg.db)
library(GO.db)

go.db <- select(org.Bt.eg.db,
       keys=keys(org.Bt.eg.db, keytype = "ENTREZID"),
       columns="GO",
       keytype="ENTREZID") %>%
  filter(!is.na(GO))


go.sets <- split(go.db$ENTREZID, go.db$GO)

go.names <- select(GO.db,
                   keys=names(go.sets),
                   columns=c("GOID", "TERM", "ONTOLOGY"),
                   keytype="GOID")

go.fry <- fry(y, go.sets, design)

Get go terms with p-value <= 0.05

go.fry %>%
  rownames_to_column('GOID') %>%
  filter(PValue <= 0.05) %>%
  left_join(go.names, by='GOID') %>%
  dplyr::select(-ends_with('.Mixed')) %>%
  ascii(format=c('s', 'd', 's', 'g', 'g', 's', 's'))
GOIDNGenesDirectionPValueFDRTERMONTOLOGY
1GO:00456486Down0.000561positive regulation of erythrocyte differentiationBP
2GO:19035983Down0.000731positive regulation of gap junction assemblyBP
3GO:000750720Down0.00131heart developmentBP
4GO:00094096Down0.00171response to coldBP
5GO:00217731Down0.00191striatal medium spiny neuron differentiationBP
6GO:00359871Down0.00191endodermal cell differentiationBP
7GO:00425411Down0.00191hemoglobin biosynthetic processBP
8GO:00427011Down0.00191progesterone secretionBP
9GO:00435091Down0.00191activin A complexCC
10GO:00435121Down0.00191inhibin A complexCC
11GO:00468801Down0.00191regulation of follicle-stimulating hormone secretionBP
12GO:00483331Down0.00191mesodermal cell differentiationBP
13GO:00517991Down0.00191negative regulation of hair follicle developmentBP
14GO:00706991Down0.00191type II activin receptor bindingMF
15GO:00971541Down0.00191GABAergic neuron differentiationBP
16GO:01407682Down0.00241protein ADP-ribosyltransferase-substrate adaptor activityMF
17GO:00466281Down0.00251positive regulation of insulin receptor signaling pathwayBP
18GO:00083082Down0.00271voltage-gated anion channel activityMF
19GO:00019425Down0.00391hair follicle developmentBP
20GO:00339623Down0.00451P-body assemblyBP
21GO:00056435Down0.00471nuclear poreCC
22GO:00028821Down0.00551positive regulation of chronic inflammatory response to non-antigenic stimulusBP
23GO:00107531Down0.00551positive regulation of cGMP-mediated signalingBP
24GO:00433061Down0.00551positive regulation of mast cell degranulationBP
25GO:00506932Down0.00611LBD domain bindingMF
26GO:00513026Up0.00661regulation of cell divisionBP
27GO:00076165Up0.00691long-term memoryBP
28GO:00349682Up0.00731histone lysine methylationBP
29GO:00301512Down0.00751molybdenum ion bindingMF
30GO:00327932Up0.00791positive regulation of CREB transcription factor activityBP
31GO:00082651Down0.00851Mo-molybdopterin cofactor sulfurase activityMF
32GO:00435451Down0.00851molybdopterin cofactor metabolic processBP
33GO:01028671Down0.00851molybdenum cofactor sulfurtransferase activityMF
34GO:00000281Up0.00851ribosomal small subunit assemblyBP
35GO:00053882Down0.00871P-type calcium transporter activityMF
36GO:00217401Down0.00891principal sensory nucleus of trigeminal nerve developmentBP
37GO:00219601Down0.00891anterior commissure morphogenesisBP
38GO:00443001Down0.00891cerebellar mossy fiberCC
39GO:00604861Down0.00891club cell differentiationBP
40GO:00605091Down0.00891type I pneumocyte differentiationBP
41GO:00611411Down0.00891lung ciliated cell differentiationBP
42GO:00716791Down0.00891commissural neuron axon guidanceBP
43GO:20007911Down0.00891negative regulation of mesenchymal cell proliferation involved in lung developmentBP
44GO:20007951Down0.00891negative regulation of epithelial cell proliferation involved in lung morphogenesisBP
45GO:00199532Down0.0091sexual reproductionBP
46GO:00486642Down0.00931neuron fate determinationBP
47GO:00082421Up0.00961omega peptidase activityMF
48GO:00700841Down0.0111protein initiator methionine removalBP
49GO:00066403Up0.0111monoacylglycerol biosynthetic processBP
50GO:00017541Down0.0111eye photoreceptor cell differentiationBP
51GO:00332101Down0.0111leptin-mediated signaling pathwayBP
52GO:00427551Down0.0111eating behaviorBP
53GO:00443201Down0.0111cellular response to leptin stimulusBP
54GO:00487081Down0.0111astrocyte differentiationBP
55GO:00600191Down0.0111radial glial cell differentiationBP
56GO:00701021Down0.0111interleukin-6-mediated signaling pathwayBP
57GO:00170601Up0.01213-galactosyl-N-acetylglucosaminide 4-alpha-L-fucosyltransferase activityMF
58GO:00970098Down0.0121energy homeostasisBP
59GO:20006375Down0.0121positive regulation of miRNA-mediated gene silencingBP
60GO:005126029Up0.0131protein homooligomerizationBP
61GO:00424201Down0.0141dopamine catabolic processBP
62GO:00170832Up0.01414-galactosyl-N-acetylglucosaminide 3-alpha-L-fucosyltransferase activityMF
63GO:00084091Up0.01415’-3’ exonuclease activityMF
64GO:00343531Up0.0141mRNA 5’-diphosphatase activityMF
65GO:00507791Up0.0141RNA destabilizationBP
66GO:00710281Up0.0141nuclear mRNA surveillanceBP
67GO:00347741Up0.0141secretory granule lumenCC
68GO:00902771Up0.0141positive regulation of peptide hormone secretionBP
69GO:19007381Up0.0141positive regulation of phospholipase C-activating G protein-coupled receptor signaling pathwayBP
70GO:19038171Up0.0141negative regulation of voltage-gated potassium channel activityBP
71GO:19051511Up0.0141negative regulation of voltage-gated sodium channel activityBP
72GO:00070413Down0.0151lysosomal transportBP
73GO:00442811Down0.0151small molecule metabolic processBP
74GO:00709343Down0.0161CRD-mediated mRNA stabilizationBP
75GO:00085262Up0.0161phosphatidylinositol transfer activityMF
76GO:01200192Up0.0161phosphatidylcholine transfer activityMF
77GO:00708282Down0.0171heterochromatin organizationBP
78GO:00199344Down0.0171cGMP-mediated signalingBP
79GO:000635739Down0.0171regulation of transcription by RNA polymerase IIBP
80GO:00457222Down0.0171positive regulation of gluconeogenesisBP
81GO:00453471Down0.0181negative regulation of MHC class II biosynthetic processBP
82GO:00049991Down0.0181vasoactive intestinal polypeptide receptor activityMF
83GO:00550894Up0.0181fatty acid homeostasisBP
84GO:00514521Down0.0191intracellular pH reductionBP
85GO:00000866Up0.0191G2/M transition of mitotic cell cycleBP
86GO:00160351Up0.021zeta DNA polymerase complexCC
87GO:00427721Up0.021DNA damage response, signal transduction resulting in transcriptionBP
88GO:00717951Down0.021K11-linked polyubiquitin modification-dependent protein bindingMF
89GO:00434053Down0.021regulation of MAP kinase activityBP
90GO:00714552Down0.021cellular response to hyperoxiaBP
91GO:19039422Up0.021positive regulation of respiratory gaseous exchangeBP
92GO:00343835Up0.021low-density lipoprotein particle clearanceBP
93GO:00312149Down0.0221biomineral tissue developmentBP
94GO:000028112Up0.0221mitotic cytokinesisBP
95GO:00602191Up0.0231camera-type eye photoreceptor cell differentiationBP
96GO:00612981Up0.0231retina vasculature development in camera-type eyeBP
97GO:00317811Up0.0231type 3 melanocortin receptor bindingMF
98GO:00317821Up0.0231type 4 melanocortin receptor bindingMF
99GO:00320981Up0.0231regulation of appetiteBP
100GO:00330591Up0.0231cellular pigmentationBP
101GO:00709961Up0.0231type 1 melanocortin receptor bindingMF
102GO:01406681Up0.0231positive regulation of oxytocin productionBP
103GO:19906801Up0.0231response to melanocyte-stimulating hormoneBP
104GO:01060081Down0.02312-oxoglutaramate amidase activityMF
105GO:19036702Down0.0241regulation of sprouting angiogenesisBP
106GO:00450642Up0.0241T-helper 2 cell differentiationBP
107GO:00430113Up0.0241myeloid dendritic cell differentiationBP
108GO:19035462Up0.0251protein localization to photoreceptor outer segmentBP
109GO:00068201Down0.0251anion transportBP
110GO:00423823Up0.0251paraspecklesCC
111GO:00060712Up0.0261glycerol metabolic processBP
112GO:00046226Up0.0261lysophospholipase activityMF
113GO:00708732Up0.0261regulation of glycogen metabolic processBP
114GO:00041442Up0.0271diacylglycerol O-acyltransferase activityMF
115GO:00194322Up0.0271triglyceride biosynthetic processBP
116GO:00502522Up0.0271retinol O-fatty-acyltransferase activityMF
117GO:00316851Down0.0271adenosine receptor bindingMF
118GO:199075611Down0.0271ubiquitin ligase-substrate adaptor activityMF
119GO:20002531Up0.0291positive regulation of feeding behaviorBP
120GO:00603972Down0.031growth hormone receptor signaling pathway via JAK-STATBP
121GO:004698322Down0.031protein dimerization activityMF
122GO:000587915Up0.0311axonemal microtubuleCC
123GO:19031462Down0.0311regulation of autophagy of mitochondrionBP
124GO:00714047Up0.0311cellular response to low-density lipoprotein particle stimulusBP
125GO:00046492Down0.0311poly(ADP-ribose) glycohydrolase activityMF
126GO:00038461Up0.03112-acylglycerol O-acyltransferase activityMF
127GO:00353361Up0.0311long-chain fatty-acyl-CoA metabolic processBP
128GO:00714001Up0.0311cellular response to oleic acidBP
129GO:00970061Up0.0311regulation of plasma lipoprotein particle levelsBP
130GO:00072602Down0.0311tyrosine phosphorylation of STAT proteinBP
131GO:00973455Down0.0321mitochondrial outer membrane permeabilizationBP
132GO:19904593Up0.0321transferrin receptor bindingMF
133GO:00361431Down0.0331kringle domain bindingMF
134GO:00055011Up0.0331retinoid bindingMF
135GO:00041762Down0.0331ATP-dependent peptidase activityMF
136GO:00308785Down0.0331thyroid gland developmentBP
137GO:000681610Down0.0331calcium ion transportBP
138GO:00046934Down0.0341cyclin-dependent protein serine/threonine kinase activityMF
139GO:00447702Up0.0341cell cycle phase transitionBP
140GO:00105721Up0.0351positive regulation of platelet activationBP
141GO:00344781Up0.0351phosphatidylglycerol catabolic processBP
142GO:00045506Up0.0351nucleoside diphosphate kinase activityMF
143GO:00431371Up0.0351DNA replication, removal of RNA primerBP
144GO:00082941Up0.0361calcium- and calmodulin-responsive adenylate cyclase activityMF
145GO:00990611Up0.0361integral component of postsynaptic density membraneCC
146GO:01500761Up0.0361neuroinflammatory responseBP
147GO:19002731Up0.0361positive regulation of long-term synaptic potentiationBP
148GO:00463393Up0.0361diacylglycerol metabolic processBP
149GO:003164812Up0.0361protein destabilizationBP
150GO:00725391Up0.0361T-helper 17 cell differentiationBP
151GO:00159362Down0.0361coenzyme A metabolic processBP
152GO:19029931Down0.0361positive regulation of amyloid precursor protein catabolic processBP
153GO:00343948Down0.0371protein localization to cell surfaceBP
154GO:20012413Down0.0371positive regulation of extrinsic apoptotic signaling pathway in absence of ligandBP
155GO:00488637Up0.0371stem cell differentiationBP
156GO:00901902Down0.0381positive regulation of branching involved in ureteric bud morphogenesisBP
157GO:00509083Up0.0381detection of light stimulus involved in visual perceptionBP
158GO:20001473Up0.0381positive regulation of cell motilityBP
159GO:00064937Up0.0381protein O-linked glycosylationBP
160GO:00714254Down0.0391hematopoietic stem cell proliferationBP
161GO:00504353Up0.0391amyloid-beta metabolic processBP
162GO:00508612Up0.0391positive regulation of B cell receptor signaling pathwayBP
163GO:00198341Down0.041phospholipase A2 inhibitor activityMF
164GO:00157602Up0.041glucose-6-phosphate transportBP
165GO:19048883Down0.041cranial skeletal system developmentBP
166GO:00725571Up0.0411IPAF inflammasome complexCC
167GO:00305212Down0.0411androgen receptor signaling pathwayBP
168GO:00314301Down0.0411M bandCC
169GO:01201872Up0.0421positive regulation of protein localization to chromatinBP
170GO:00458361Up0.0421positive regulation of meiotic nuclear divisionBP
171GO:00702011Up0.0421regulation of establishment of protein localizationBP
172GO:00341153Up0.0421negative regulation of heterotypic cell-cell adhesionBP
173GO:19043223Up0.0421cellular response to forskolinBP
174GO:19903572Down0.0431terminal webCC
175GO:00001182Up0.0441histone deacetylase complexCC
176GO:00902672Up0.0441positive regulation of mitotic cell cycle spindle assembly checkpointBP
177GO:00107451Up0.0441negative regulation of macrophage derived foam cell differentiationBP
178GO:00308531Up0.0441negative regulation of granulocyte differentiationBP
179GO:00330341Up0.0441positive regulation of myeloid cell apoptotic processBP
180GO:00336911Up0.0441sialic acid bindingMF
181GO:00456501Up0.0441negative regulation of macrophage differentiationBP
182GO:00459231Up0.0441positive regulation of fatty acid metabolic processBP
183GO:00508051Up0.0441negative regulation of synaptic transmissionBP
184GO:00903171Up0.0441negative regulation of intracellular protein transportBP
185GO:01101131Up0.0441positive regulation of lipid transporter activityBP
186GO:20002791Up0.0441negative regulation of DNA biosynthetic processBP
187GO:20004671Up0.0441positive regulation of glycogen (starch) synthase activityBP
188GO:20004781Up0.0441positive regulation of metanephric podocyte developmentBP
189GO:20005341Up0.0441positive regulation of renal albumin absorptionBP
190GO:20005841Up0.0441negative regulation of platelet-derived growth factor receptor-alpha signaling pathwayBP
191GO:20005901Up0.0441negative regulation of metanephric mesenchymal cell migrationBP
192GO:00512584Up0.0451protein polymerizationBP
193GO:00018333Down0.0451inner cell mass cell proliferationBP
194GO:00516511Down0.0451maintenance of location in cellBP
195GO:19053791Down0.0451beta-N-acetylhexosaminidase complexCC
196GO:000193313Up0.0461negative regulation of protein phosphorylationBP
197GO:00602792Down0.0461positive regulation of ovulationBP
198GO:00018376Down0.0471epithelial to mesenchymal transitionBP
199GO:20012563Up0.0471regulation of store-operated calcium entryBP
200GO:00439701Up0.0471histone H3-K9 acetylationBP
201GO:005083011Up0.0481defense response to Gram-positive bacteriumBP
202GO:00516033Up0.0481proteolysis involved in protein catabolic processBP
203GO:00030852Up0.0481negative regulation of systemic arterial blood pressureBP
204GO:00326931Down0.0481negative regulation of interleukin-10 productionBP
205GO:00341413Down0.0491positive regulation of toll-like receptor 3 signaling pathwayBP
206GO:00091541Up0.0491purine ribonucleotide catabolic processBP
207GO:00169291Up0.0491deSUMOylase activityMF
208GO:00365051Up0.0491prosaposin receptor activityMF
209GO:00423102Down0.0491vasoconstrictionBP
210GO:00364352Down0.0491K48-linked polyubiquitin modification-dependent protein bindingMF
211GO:00650102Down0.0491extracellular membrane-bounded organelleCC
212GO:00900491Down0.051regulation of cell migration involved in sprouting angiogenesisBP
213GO:19030261Down0.051negative regulation of RNA polymerase II regulatory region sequence-specific DNA bindingBP
214GO:19033781Down0.051positive regulation of oxidative stress-induced neuron intrinsic apoptotic signaling pathwayBP
215GO:19039551Down0.051positive regulation of protein targeting to mitochondrionBP
216GO:19904521Down0.051Parkin-FBXW7-Cul1 ubiquitin ligase complexCC
217GO:00438491Down0.051Ras palmitoyltransferase activityMF

GO terms of interest gene expression

GO:0007507
heart development
GO:0045648
positive regulation of erythrocyte differentiation
GO:0007507
heart development
GO:0009409
response to cold
GO:0001942
hair follicle development
GO:0097009
energy homeostasis
GO:0051260
protein homooligomerization
GO:0140668
positive regulation of oxytocin production
GO:0060397
growth hormone receptor signaling pathway via JAK-STAT
GO:0006816
calcium ion transport
GO:0050830
defense response to Gram-positive bacterium
GO:0003085
negative regulation of systemic arterial blood pressure
GO:0042310
vasoconstriction
GO:0051302
regulation of cell division
counts.per.million <- cpm(y) %>%
  as.data.frame %>%
  rownames_to_column("GeneID")

go.data <- go.terms.of.interest %>%
  separate(V1, into=c('id', 'term'), sep=" :: ") %>%
  mutate(name = paste(id, term, sep=' - ')) %>%
  pull(id, name=name) %>%
  lapply(function(x){
    filter(counts.per.million, GeneID %in% go.sets[[x]]) %>%
      left_join(desc, by="GeneID")
    })


 mapply(function(data, name) ascii(data, name=name), go.data, names(go.data), SIMPLIFY = F)


## go.plots <- mapply(function(data, name) {
##   gather(data, -GeneID, key='sample', value='cpm') %>%
##   left_join(desc, by="GeneID")  %>%
##     ggplot(aes(sample, product, fill=cpm)) +
##     geom_tile() +
##     ggtitle(name)
## }, go.data, names(go.data), SIMPLIFY = F)
GeneIDSLICK_2041SLICK_2128SLICK_2129SLICK_2171SLICK_2202SLICK_2287SLICK_466WT_2058WT_2068WT_2089WT_2116WT_2226WT_2273geneproduct
128093916.9414.0420.7911.5216.0714.0815.5213.2721.4311.1829.9018.7816.79TEKTEK receptor tyrosine kinase
22811341.863.776.492.305.056.064.631.664.812.002.563.783.95ECE2endothelin converting enzyme 2%2C transcript variant 2a
32811937.2810.216.8910.155.377.586.0310.507.0112.638.675.406.48GJA1gap junction protein alpha 1
42812702.701.461.594.591.342.903.143.791.184.913.985.023.18HOPXHOP homeobox%2C transcript variant X3
52817335.073.133.268.764.797.576.959.174.725.985.804.569.08CXADRCXADR%2C Ig-like cell adhesion molecule%2C transcript variant X2
628232112.9113.526.3813.619.8212.6013.4316.2211.3813.8415.608.6111.73PPP3R1protein phosphatase 3 regulatory subunit B%2C alpha
728238228.2533.4032.4122.8036.0441.6234.6329.6737.2325.0430.0026.8234.54TGFBR1transforming growth factor beta receptor 1%2C transcript variant X2
828268296.48118.55104.6558.00113.50115.9796.9082.98118.9263.92101.75145.76110.85GRK2G protein-coupled receptor kinase 2%2C transcript variant X1
933806813.6212.417.5817.6710.7412.8210.2019.4010.6521.3014.809.0913.11ACVR1activin A receptor type 1%2C transcript variant X1
105060856.256.107.417.266.383.963.945.504.905.657.266.917.01ZDHHC16zinc finger DHHC-type containing 16%2C transcript variant X3
1150965613.9320.6219.9313.9017.8716.2616.6015.7119.9414.9519.5022.5319.89PSKH1protein serine kinase H1
1251225414.2814.0911.3314.3911.8110.6313.2917.3112.1412.1724.2710.0913.61MEF2Cmyocyte enhancer factor 2C%2C transcript variant X9
135149978.789.2415.247.718.8910.067.335.6111.247.865.138.998.30ZNHIT1zinc finger HIT-type containing 1
1453404111.7712.3818.4510.1111.4514.2416.5515.3619.4810.4012.6319.2719.33MICAL2microtubule associated monooxygenase%2C calponin and LIM domain containing 2%2C transcript variant X1
1553406934.5837.3023.7638.4629.7529.2727.7348.8227.8239.8232.1333.1833.27TGFB2transforming growth factor beta 2%2C transcript variant X3
1653869011.4714.0621.6711.6519.245.7917.019.7320.4612.4915.6615.0315.97ID3inhibitor of DNA binding 3%2C HLH protein
1753943017.6422.1019.6515.6627.2415.0519.4519.3218.7220.6710.9714.148.76OSR1odd-skipped related transciption factor 1
1853969621.8221.3220.8521.8126.5723.3124.2420.4128.9022.2227.8121.4422.11HEXIM1hexamethylene bisacetamide inducible 1
196154926.966.875.748.435.275.148.094.829.538.394.007.625.34SMG9SMG9%2C nonsense mediated mRNA decay factor
2078633518.3016.3114.0120.2716.0421.4512.4222.0417.7121.7215.4915.6522.29GYS1glycogen synthase 1

$`GO:0045648 - positive regulation of erythrocyte differentiation`

GeneIDSLICK_2041SLICK_2128SLICK_2129SLICK_2171SLICK_2202SLICK_2287SLICK_466WT_2058WT_2068WT_2089WT_2116WT_2226WT_2273geneproduct
128159810.7611.188.627.489.2511.6813.7215.699.2710.0619.398.2213.77ACVR2Aactivin A receptor type 2A
22818670.190.210.240.400.320.120.080.481.341.310.420.760.44INHBAinhibin subunit beta A%2C transcript variant X2
32818710.810.340.862.721.5245.471.102.381.743.066.412.001.71ISG15ISG15 ubiquitin-like modifier
428237648.0759.8450.2325.1742.6945.9334.0642.6176.0126.8355.6449.2546.47STAT5Bsignal transducer and activator of transcription 5B%2C transcript variant X1
550854193.2691.5881.78102.9583.50101.8089.40103.78102.56115.2698.3699.88124.89STAT3signal transducer and activator of transcription 3
653896110.228.559.429.279.088.0214.137.549.379.486.3613.409.46ANKRD54ankyrin repeat domain 54

$`GO:0007507 - heart development`

GeneIDSLICK_2041SLICK_2128SLICK_2129SLICK_2171SLICK_2202SLICK_2287SLICK_466WT_2058WT_2068WT_2089WT_2116WT_2226WT_2273geneproduct
128093916.9414.0420.7911.5216.0714.0815.5213.2721.4311.1829.9018.7816.79TEKTEK receptor tyrosine kinase
22811341.863.776.492.305.056.064.631.664.812.002.563.783.95ECE2endothelin converting enzyme 2%2C transcript variant 2a
32811937.2810.216.8910.155.377.586.0310.507.0112.638.675.406.48GJA1gap junction protein alpha 1
42812702.701.461.594.591.342.903.143.791.184.913.985.023.18HOPXHOP homeobox%2C transcript variant X3
52817335.073.133.268.764.797.576.959.174.725.985.804.569.08CXADRCXADR%2C Ig-like cell adhesion molecule%2C transcript variant X2
628232112.9113.526.3813.619.8212.6013.4316.2211.3813.8415.608.6111.73PPP3R1protein phosphatase 3 regulatory subunit B%2C alpha
728238228.2533.4032.4122.8036.0441.6234.6329.6737.2325.0430.0026.8234.54TGFBR1transforming growth factor beta receptor 1%2C transcript variant X2
828268296.48118.55104.6558.00113.50115.9796.9082.98118.9263.92101.75145.76110.85GRK2G protein-coupled receptor kinase 2%2C transcript variant X1
933806813.6212.417.5817.6710.7412.8210.2019.4010.6521.3014.809.0913.11ACVR1activin A receptor type 1%2C transcript variant X1
105060856.256.107.417.266.383.963.945.504.905.657.266.917.01ZDHHC16zinc finger DHHC-type containing 16%2C transcript variant X3
1150965613.9320.6219.9313.9017.8716.2616.6015.7119.9414.9519.5022.5319.89PSKH1protein serine kinase H1
1251225414.2814.0911.3314.3911.8110.6313.2917.3112.1412.1724.2710.0913.61MEF2Cmyocyte enhancer factor 2C%2C transcript variant X9
135149978.789.2415.247.718.8910.067.335.6111.247.865.138.998.30ZNHIT1zinc finger HIT-type containing 1
1453404111.7712.3818.4510.1111.4514.2416.5515.3619.4810.4012.6319.2719.33MICAL2microtubule associated monooxygenase%2C calponin and LIM domain containing 2%2C transcript variant X1
1553406934.5837.3023.7638.4629.7529.2727.7348.8227.8239.8232.1333.1833.27TGFB2transforming growth factor beta 2%2C transcript variant X3
1653869011.4714.0621.6711.6519.245.7917.019.7320.4612.4915.6615.0315.97ID3inhibitor of DNA binding 3%2C HLH protein
1753943017.6422.1019.6515.6627.2415.0519.4519.3218.7220.6710.9714.148.76OSR1odd-skipped related transciption factor 1
1853969621.8221.3220.8521.8126.5723.3124.2420.4128.9022.2227.8121.4422.11HEXIM1hexamethylene bisacetamide inducible 1
196154926.966.875.748.435.275.148.094.829.538.394.007.625.34SMG9SMG9%2C nonsense mediated mRNA decay factor
2078633518.3016.3114.0120.2716.0421.4512.4222.0417.7121.7215.4915.6522.29GYS1glycogen synthase 1

$`GO:0009409 - response to cold`

GeneIDSLICK_2041SLICK_2128SLICK_2129SLICK_2171SLICK_2202SLICK_2287SLICK_466WT_2058WT_2068WT_2089WT_2116WT_2226WT_2273geneproduct
12816052.752.141.442.013.181.464.152.562.822.213.293.675.86ADRB2adrenoceptor beta 2
22818270.891.441.210.770.410.570.821.341.121.910.780.471.00HSPA2heat shock protein family A (Hsp70) member 2
3281832238.29220.47234.09303.29249.61302.17218.58360.65258.21380.33307.61202.29234.78HSP90AA1heat shock protein 90 alpha family class A member 1
428213045.1447.6456.0349.5855.7740.3246.7136.1564.4547.9149.0069.1853.79ACADVLacyl-CoA dehydrogenase very long chain%2C transcript variant X1
550596832.4942.7226.0318.6325.9725.4521.4931.0125.9423.1746.3734.3225.33ACADMacyl-CoA dehydrogenase medium chain%2C transcript variant X1
65238858.6611.9512.117.249.1313.8912.7910.6712.158.509.9611.6917.61TMEM135transmembrane protein 135%2C transcript variant X2

$`GO:0001942 - hair follicle development`

GeneIDSLICK_2041SLICK_2128SLICK_2129SLICK_2171SLICK_2202SLICK_2287SLICK_466WT_2058WT_2068WT_2089WT_2116WT_2226WT_2273geneproduct
12818670.190.210.240.400.320.120.080.481.341.310.420.760.44INHBAinhibin subunit beta A%2C transcript variant X2
250542350.7935.8924.3544.4229.2338.9236.7861.4835.7345.2761.3831.3137.88LGR4leucine rich repeat containing G protein-coupled receptor 4
353406934.5837.3023.7638.4629.7529.2727.7348.8227.8239.8232.1333.1833.27TGFB2transforming growth factor beta 2%2C transcript variant X3
45358148.588.867.088.288.089.008.5611.056.746.767.935.557.27ZDHHC21zinc finger DHHC-type containing 21%2C transcript variant X1
561669418.6735.4359.2013.6935.4028.0228.1524.7544.9115.8625.0048.5237.63NSDHLNAD(P) dependent steroid dehydrogenase-like%2C transcript variant X1

$`GO:0097009 - energy homeostasis`

GeneIDSLICK_2041SLICK_2128SLICK_2129SLICK_2171SLICK_2202SLICK_2287SLICK_466WT_2058WT_2068WT_2089WT_2116WT_2226WT_2273geneproduct
12810521147.381848.112525.53393.442177.522320.861873.411606.572062.02603.623116.642527.422110.53CD36CD36 molecule%2C transcript variant 1
2281370312.28445.53347.16276.91365.57392.35359.19309.06341.74260.43434.19471.35395.46UBBubiquitin B
328230618.9819.7514.5816.9118.7616.1119.0836.4120.0421.7726.909.7118.77PIK3CAphosphatidylinositol-4%2C5-bisphosphate 3-kinase catalytic subunit alpha%2C transcript variant X1
43384460.4712.266.830.7716.383.673.498.1912.320.351.5513.731.79PPARGC1APPARG coactivator 1 alpha
55062232.942.622.202.421.523.001.902.372.202.733.011.404.17OMA1OMA1 zinc metallopeptidase%2C transcript variant X5
650854193.2691.5881.78102.9583.50101.8089.40103.78102.56115.2698.3699.88124.89STAT3signal transducer and activator of transcription 3
75138520.730.000.690.540.450.651.070.470.891.081.051.371.17PM20D1peptidase M20 domain containing 1
852665215.1412.7910.4517.9313.7314.2714.9718.3611.1115.9616.1912.9413.07FLCNfolliculin%2C transcript variant X1

$`GO:0051260 - protein homooligomerization`

GeneIDSLICK_2041SLICK_2128SLICK_2129SLICK_2171SLICK_2202SLICK_2287SLICK_466WT_2058WT_2068WT_2089WT_2116WT_2226WT_2273geneproduct
11001245024.223.193.504.475.483.894.595.383.733.623.092.932.70KCTD7potassium channel tetramerization domain containing 7
210012530815.6315.9920.729.8917.8416.6915.1111.6413.719.2210.1820.5620.99KCTD5potassium channel tetramerization domain containing 5%2C transcript variant X1
32810880.280.000.341.050.110.690.250.300.352.610.000.470.39COMPcartilage oligomeric matrix protein
42814260.130.000.112.760.040.490.040.800.420.350.000.000.44PRNDprion like protein doppel
528142755.6972.4450.6138.9768.4868.9961.3597.4352.7169.5164.0041.9264.76PRNPprion protein%2C transcript variant 1
62814654.513.143.615.104.544.105.331.943.093.953.483.603.13ROM1retinal outer segment membrane protein 1%2C transcript variant X1
728152816.3020.8934.8124.1924.6515.6115.3322.9632.0622.2422.4635.6019.73TGM2transglutaminase 2
82818801.010.000.111.370.300.610.330.720.541.340.830.000.17KCNA4potassium voltage-gated channel subfamily A member 4
928257314.1114.9028.0811.8118.8320.8615.4514.4814.4912.9115.5742.9614.94KCNMA1potassium calcium-activated channel subfamily M alpha 1%2C transcript variant X8
102828461.042.311.263.102.071.241.131.730.662.510.583.021.62PYCARDPYD and CARD domain containing
1131772463.3363.5570.5637.9871.4992.5771.5174.7473.1231.2695.5575.6766.59USO1USO1 vesicle transport factor%2C transcript variant X1
1250789926.4124.5029.3923.8626.6825.0819.4728.8423.6226.3828.0222.8726.28MICU1mitochondrial calcium uptake 1
135079111.682.352.362.501.231.171.031.041.542.041.011.371.34KCTD13potassium channel tetramerization domain containing 13
145083434.626.254.733.327.645.424.703.416.284.765.514.613.16JMJD6arginine demethylase and lysine hydroxylase
1551067917.9022.0619.3723.6321.5416.5022.3011.8617.2317.6917.3922.0117.24ALADaminolevulinate dehydratase
1651190815.9325.6919.1324.5919.8118.6114.8018.5419.9224.4313.3517.1421.06EHD1EH domain containing 1
1751240218.1320.7023.0424.0219.9216.5717.3215.2617.3620.7513.4117.4218.00SHKBP1SH3KBP1 binding protein 1%2C transcript variant X2
185124800.650.800.560.750.690.740.720.510.210.730.200.170.86NLRC4NLR family CARD domain containing 4%2C transcript variant X2
195125785.752.713.424.344.832.876.623.376.294.692.732.211.86KCTD15potassium channel tetramerization domain containing 15%2C transcript variant X1
2051332440.0862.4184.5430.6662.2950.5354.7033.1667.0931.0743.2382.0252.01LETM1leucine zipper and EF-hand containing transmembrane protein 1%2C transcript variant X1
215183843.404.191.603.282.122.742.353.371.602.662.122.591.81KCND1potassium voltage-gated channel subfamily D member 1%2C transcript variant X2
2252017317.0519.6419.4714.5819.2617.4115.1113.1818.2610.2214.2222.6119.67TMEM120Atransmembrane protein 120A
2352144210.7212.6819.768.7915.4916.4214.3811.7913.199.9811.5216.7512.43SPASTspastin%2C transcript variant X2
2452199810.3912.9013.577.7214.6712.7112.729.2912.369.2810.7218.2911.38ZNF746zinc finger protein 746%2C transcript variant X3
255354240.260.140.060.390.560.730.120.830.040.260.490.310.00ATL1atlastin GTPase 1%2C transcript variant X2
265391672.853.082.995.192.203.162.833.563.204.623.262.153.04KCTD11potassium channel tetramerization domain containing 11
276136944.894.271.815.531.943.315.055.823.133.475.603.004.36KCTD18potassium channel tetramerization domain containing 18%2C transcript variant X1
287838559.248.2910.665.688.048.8310.179.287.105.4510.238.378.83TIFATRAF interacting protein with forkhead associated domain%2C transcript variant X1
2978458711.8613.6310.4722.0411.1312.5813.5722.658.8823.0016.327.7212.33KCTD1potassium channel tetramerization domain containing 1%2C transcript variant X3

$`GO:0140668 - positive regulation of oxytocin production`

GeneIDSLICK_2041SLICK_2128SLICK_2129SLICK_2171SLICK_2202SLICK_2287SLICK_466WT_2058WT_2068WT_2089WT_2116WT_2226WT_2273geneproduct
12814164.585.263.222.434.833.593.511.862.830.851.184.442.46POMCproopiomelanocortin%2C transcript variant X1

$`GO:0060397 - growth hormone receptor signaling pathway via JAK-STAT`

GeneIDSLICK_2041SLICK_2128SLICK_2129SLICK_2171SLICK_2202SLICK_2287SLICK_466WT_2058WT_2068WT_2089WT_2116WT_2226WT_2273geneproduct
128237648.0759.8450.2325.1742.6945.9334.0642.6176.0126.8355.6449.2546.47STAT5Bsignal transducer and activator of transcription 5B%2C transcript variant X1
250854193.2691.5881.78102.9583.50101.8089.40103.78102.56115.2698.3699.88124.89STAT3signal transducer and activator of transcription 3

$`GO:0006816 - calcium ion transport`

GeneIDSLICK_2041SLICK_2128SLICK_2129SLICK_2171SLICK_2202SLICK_2287SLICK_466WT_2058WT_2068WT_2089WT_2116WT_2226WT_2273geneproduct
1281040134.56171.76163.8194.97166.61100.67109.04165.08171.85135.34243.58165.44145.98CAV1caveolin 1%2C transcript variant X1
228187913.997.127.2013.155.924.1510.658.3810.5915.818.206.848.22ITPR3inositol 1%2C4%2C5-trisphosphate receptor type 3%2C transcript variant X1
32821780.630.450.400.210.220.001.030.520.270.390.261.171.25CHRNA7cholinergic receptor%2C nicotinic%2C alpha 7
428219622.3012.548.4135.6412.8110.1614.5016.7110.7021.2211.0612.9514.31CORO1Acoronin 1A%2C transcript variant X2
52823257.095.413.3912.473.559.067.0510.072.266.576.203.936.04PRKCBprotein kinase C beta%2C transcript variant X1
632766359.2248.0355.3241.9555.4550.4751.1757.1056.4144.7857.2250.5663.71ATP2C1ATPase secretory pathway Ca2+ transporting 1%2C transcript variant X3
732768522.9828.3628.6446.7125.3621.4525.8031.9732.4543.4321.9422.9823.74ANXA6annexin A6%2C transcript variant X1
833792513.3715.8724.548.5230.1228.5323.0218.0327.5912.5827.4727.7426.95SLC8A1solute carrier family 8 member A1%2C transcript variant X3
9515461121.43129.84163.8485.40145.33177.80113.42100.39131.4489.9974.01110.99113.95SARAFstore-operated calcium entry associated regulatory factor
1054089216.5517.6418.5815.9818.7826.5418.4420.3120.4415.3522.4224.0426.10DNM1Ldynamin 1 like%2C transcript variant X7

$`GO:0050830 - defense response to Gram-positive bacterium`

GeneIDSLICK_2041SLICK_2128SLICK_2129SLICK_2171SLICK_2202SLICK_2287SLICK_466WT_2058WT_2068WT_2089WT_2116WT_2226WT_2273geneproduct
12812491.211.670.244.560.081.881.141.990.231.490.790.700.22IL18interleukin 18%2C transcript variant X1
233803917.1316.3513.4121.3012.3721.5513.4215.2311.3013.3814.6010.3720.35CASP4caspase 4%2C apoptosis-related cysteine peptidase%2C transcript variant X1
344488133.7527.5856.0821.9349.1146.5327.2821.9135.0221.1032.0837.6748.47MYD88myeloid differentiation primary response 88%2C transcript variant X2
45062061.060.280.261.650.690.880.831.330.320.880.710.000.00MR1major histocompatibility complex%2C class I-related%2C transcript variant X3
550650922.6322.5427.2019.7518.5632.8526.5623.9530.5518.1628.0522.3723.35SEH1LSEH1 like nucleoporin%2C transcript variant X1
650899012.3017.9122.0126.9416.6210.9319.079.6322.2019.549.4914.5914.10RARRES2retinoic acid receptor responder 2%2C transcript variant X2
753440714.0512.3613.8912.3614.4416.9915.9616.1714.6710.1017.1913.6714.85RIPK2receptor interacting serine/threonine kinase 2%2C transcript variant X2
853999714.1514.829.1338.2517.0614.688.8514.5711.5424.2910.5014.5618.21MPEG1macrophage expressed 1
954044416.319.959.7721.0013.1210.9313.0113.0911.3219.3117.3912.1114.85HMGB2high mobility group box 2
1061853010.739.8015.039.6815.029.219.605.9219.5010.747.7014.1110.02ROMO1reactive oxygen species modulator 1%2C transcript variant X1
11767908155.49150.63143.32142.40168.43135.96175.34112.17164.50124.46101.98144.32135.06RPL39ribosomal protein L39

$`GO:0003085 - negative regulation of systemic arterial blood pressure`

GeneIDSLICK_2041SLICK_2128SLICK_2129SLICK_2171SLICK_2202SLICK_2287SLICK_466WT_2058WT_2068WT_2089WT_2116WT_2226WT_2273geneproduct
15275723.641.484.371.284.451.660.530.150.691.680.341.021.86GPR37L1G protein-coupled receptor 37 like 1
253212023.2529.7617.7016.7421.5325.3424.5523.7823.1814.6119.4823.6526.04BBS4Bardet-Biedl syndrome 4%2C transcript variant X4

$`GO:0042310 - vasoconstriction`

GeneIDSLICK_2041SLICK_2128SLICK_2129SLICK_2171SLICK_2202SLICK_2287SLICK_466WT_2058WT_2068WT_2089WT_2116WT_2226WT_2273geneproduct
1281040134.56171.76163.8194.97166.61100.67109.04165.08171.85135.34243.58165.44145.98CAV1caveolin 1%2C transcript variant X1
25271140.540.701.780.450.753.193.130.925.911.150.892.931.69AGTangiotensinogen

$`GO:0051302 - regulation of cell division`

GeneIDSLICK_2041SLICK_2128SLICK_2129SLICK_2171SLICK_2202SLICK_2287SLICK_466WT_2058WT_2068WT_2089WT_2116WT_2226WT_2273geneproduct
1327682579.77592.48493.33547.93527.13665.62540.97639.48438.55618.07652.12389.17689.11RACK1receptor for activated C kinase 1
25054014.894.926.948.655.416.077.137.116.017.926.327.956.10TADA2Atranscriptional adaptor 2A%2C transcript variant X3
35074011.760.851.551.270.791.720.380.570.120.560.291.120.85OOEPoocyte expressed protein
45101246.5911.278.644.1210.796.447.655.628.574.8710.327.865.23EFHC1EF-hand domain containing 1
551014117.3916.4023.4017.6317.3214.1514.6911.5618.9415.0812.8118.7620.63CIB1calcium and integrin binding 1
651018421.5018.1218.1229.0422.4721.9823.9520.0318.7926.0917.2616.1016.25TADA3transcriptional adaptor 3%2C transcript variant X1

Figure

counts.per.million <- cpm(y) %>%
  as.data.frame %>%
  rownames_to_column("GeneID")

final.go.terms <- data.frame(GOID=sprintf("GO:%07d", c(60397, 9409, 1942, 42310,
                                       140668, 51260, 50830)))
plot.names <- go.fry %>%
  rownames_to_column('GOID') %>%
  left_join(go.names, by='GOID') %>%
  right_join(final.go.terms) %>%
  split(.$GOID)

go.data <- lapply(plot.names,
                  function(x) filter(counts.per.million,
                                     GeneID %in% go.sets[[x$GOID]]))

go.plots <- mapply(function(data, name) {
  gather(data, -GeneID, key='sample', value='cpm') %>%
    left_join(desc, by="GeneID")  %>%
    mutate(group=sub("_.*", "", sample),
           product = sub(', transcript variant X[1-9]', '', URLdecode(product))) %>%
    ggplot(aes(sample, product, alpha=cpm, fill=group)) +
    geom_tile(color='grey') +
    geom_text(aes(label=sprintf("%0.1f", cpm)), alpha=1)+
    scale_fill_manual(values=c(WT="#cc546e", SLICK="#4db598"), labels=c(WT="Wild-Type", SLICK="SLICK")) +
    scale_alpha_continuous() +
    ggtitle(sprintf("%s: %s (%s)", name$GOID, name$TERM, name$Direction)) +
    theme_minimal() +
    theme(panel.grid = element_blank(),
          legend.position = 'none',
          axis.title =element_blank(),
          axis.text.x = element_blank())
}, go.data, plot.names, SIMPLIFY = F)

library(cowplot)

short.plots <- go.plots[names(go.plots) != "GO:0051260"]
rel.heights <- sapply(go.data[names(go.data) != "GO:0051260"], nrow) + 1.5

plot_grid(go.plots[["GO:0051260"]] + theme(axis.text.x=element_text(angle=45, hjust=1, vjust=1)),
          plot_grid(plotlist=short.plots, ncol=1, rel_heights = rel.heights , align="v" ),
          ncol=2)

Session Info

sessionInfo()

Meta - Reduced

library(Hmisc)
library(tidyverse)
library(cowplot)

metabolites <-
  read.delim("metabolomics.reduced.tbl", nrows = 1) %>% select(-c(1:8)) %>% c %>% unlist

data <- read.delim("metabolomics.reduced.tbl", skip=1) %>%
  rename(setNames(make.names(metabolites), names(metabolites)),
         Sample="Sample..")

meta.data <- data[,c(1:3)]
phys <- data %>%
  select(1, c(4:8)) %>%
  column_to_rownames("Sample") %>%
  mutate_all(as.numeric)
metab <- data %>%
  select("Sample", names(metabolites)) %>%
  column_to_rownames("Sample") %>%
  mutate_all(as.numeric)

cor.data <- rcorr(as.matrix(metab), as.matrix(phys), type="spearman") %>%
  lapply('[', names(metabolites), names(phys)) %>%
  lapply(as.data.frame) %>%
  lapply(rownames_to_column, "ID") %>%
  bind_rows(.id='Type') %>%
  gather( "Variable", "val", -ID, -Type ) %>%
  spread(Type, val) %>%
  mutate(color = fct_recode(cut(P, breaks=c(-Inf, 0.01, 0.05 , Inf))),
         Variable = factor(Variable, levels=c("MY", "VT", "RI", "Diameter", "Total_MBF")),
         ID = factor(ID, levels=names(sort(metabolites))),
         set = (as.numeric(ID)+1) %% 2)

levels(cor.data$color) <- c("<=0.01", "0.01<x<=0.05", ">0.05")

metabolite.labels <- setNames(sprintf("%s\n%s", names(sort(metabolites)), sort(metabolites)), names(sort(metabolites)))
plot <- ggplot(cor.data, aes(Variable, ID,
                     size=abs(r), alpha=abs(r), fill=r,
                     color=color)) +
  geom_point(shape=21, stroke=2) +
  scale_x_discrete(position = 'top') +
  scale_y_discrete(limits=rev, labels=metabolite.labels) +
  scale_alpha_continuous(guide='none', range=c(1,1), limits=c(0,1)) +
  scale_size_continuous(guide='none', range=c(1,15), limits=c(0,1)) +
  scale_fill_distiller( palette = 'RdBu', direction = 1,
                        guide = guide_colorbar(barwidth=25), name='Correlation', limits=c(-1,1)) +
  scale_color_manual(values=c("#D4A10D", "#848284", 'white'), name="Significance") +
  facet_wrap(set~., scales="free", ncol=2) +
  theme_minimal() +
  theme(axis.title = element_blank(),
        panel.grid = element_blank(),
        strip.background = element_blank(),
        strip.text.x = element_blank(),
        legend.position = 'none',
        legend.box="vertical")

plot_grid(plot, get_legend(plot + theme(legend.position = 'bottom')), nrow = 2, rel_heights = c(1, 0.1))
options(asciiType = "org")
mutate(cor.data, value = sprintf("%.03f (%.03f)", r, P)) %>%
  select(ID, Variable, value) %>%
  spread("Variable", "value") %>%
  mutate(ID = factor(ID, levels=names(sort(metabolites)))) %>%
  ascii::ascii()
IDMYVTRIDiameterTotal_MBF
1HMDB0244503-0.617 (0.019)0.538 (0.047)0.503 (0.067)-0.253 (0.383)-0.433 (0.122)
2HMDB00031750.582 (0.029)-0.358 (0.208)-0.090 (0.759)0.451 (0.106)0.262 (0.366)
3HMDB0006245-0.337 (0.238)0.174 (0.553)0.604 (0.022)-0.613 (0.020)-0.574 (0.032)
4HMDB02448690.710 (0.004)0.020 (0.946)-0.477 (0.085)0.380 (0.180)0.530 (0.051)
5HMDB0245244-0.412 (0.143)0.266 (0.358)0.705 (0.005)-0.495 (0.072)-0.569 (0.034)
6HMDB0037544-0.710 (0.004)0.332 (0.246)0.319 (0.267)-0.622 (0.018)-0.547 (0.043)
7HMDB00005280.822 (0.000)-0.196 (0.503)-0.204 (0.483)0.125 (0.670)0.332 (0.246)
8HMDB00627380.406 (0.150)-0.138 (0.637)-0.565 (0.035)0.516 (0.059)0.785 (0.001)
9HMDB00405510.157 (0.593)-0.235 (0.418)-0.644 (0.013)0.569 (0.034)0.543 (0.045)
10HMDB0304536-0.348 (0.222)0.121 (0.681)0.407 (0.149)-0.516 (0.059)-0.640 (0.014)
11HMDB0002212-0.774 (0.001)0.059 (0.840)0.415 (0.140)-0.420 (0.135)-0.451 (0.106)
12HMDB0000063-0.042 (0.887)0.275 (0.342)0.015 (0.958)-0.398 (0.159)-0.538 (0.047)
13HMDB02424410.077 (0.793)-0.732 (0.003)-0.380 (0.180)0.385 (0.175)0.182 (0.533)
14HMDB0001051-0.329 (0.251)0.284 (0.326)0.697 (0.006)-0.411 (0.144)-0.569 (0.034)
15HMDB0000131-0.013 (0.964)0.666 (0.009)0.323 (0.260)-0.503 (0.067)-0.266 (0.358)
16HMDB0002345-0.664 (0.010)0.459 (0.098)0.495 (0.072)-0.354 (0.215)-0.525 (0.054)
17HMDB00103810.545 (0.044)-0.160 (0.584)-0.099 (0.737)0.301 (0.296)0.442 (0.114)
18HMDB00103900.404 (0.152)-0.688 (0.007)-0.530 (0.051)0.376 (0.185)0.349 (0.221)
19HMDB0000156-0.236 (0.417)0.367 (0.197)0.675 (0.008)-0.565 (0.035)-0.569 (0.034)
20HMDB0255110-0.659 (0.010)0.407 (0.149)0.600 (0.023)-0.468 (0.091)-0.508 (0.064)
21HMDB00623420.181 (0.536)-0.710 (0.004)-0.385 (0.175)0.178 (0.543)0.178 (0.543)
22HMDB0002088-0.670 (0.009)0.420 (0.135)0.516 (0.059)-0.495 (0.072)-0.530 (0.051)
23HMDB0013648-0.461 (0.097)0.341 (0.233)0.459 (0.098)-0.675 (0.008)-0.670 (0.009)
24HMDB0002100-0.723 (0.003)0.376 (0.185)0.376 (0.185)-0.477 (0.085)-0.451 (0.106)
25HMDB00290060.549 (0.042)-0.209 (0.474)-0.468 (0.091)0.578 (0.030)0.530 (0.051)
26HMDB0002752-0.364 (0.201)0.037 (0.899)0.200 (0.493)-0.626 (0.017)-0.596 (0.025)
27HMDB00014030.598 (0.024)-0.398 (0.159)-0.182 (0.533)0.301 (0.296)0.262 (0.366)
28HMDB00012200.426 (0.129)-0.327 (0.253)0.169 (0.563)0.600 (0.023)0.222 (0.446)
29HMDB00026640.659 (0.010)-0.108 (0.714)-0.073 (0.805)0.481 (0.081)0.415 (0.140)
30HMDB00305690.289 (0.317)-0.495 (0.072)-0.618 (0.019)0.112 (0.703)0.244 (0.401)
31HMDB00032520.602 (0.023)-0.310 (0.281)-0.169 (0.563)0.297 (0.303)0.385 (0.175)
32HMDB0014447-0.234 (0.421)0.402 (0.154)0.679 (0.008)-0.596 (0.025)-0.648 (0.012)
33HMDB0000929-0.157 (0.593)0.473 (0.088)0.578 (0.030)-0.407 (0.149)-0.275 (0.342)
34HMDB00290900.452 (0.105)-0.182 (0.533)-0.301 (0.296)0.640 (0.014)0.398 (0.159)

About

Comparison of Puerto Rican slick and wild-type haired Holstein cattle transcriptomic profiles during mid-lactation

Resources

Stars

Watchers

Forks