Skip to content

Files

Latest commit

 

History

History
149 lines (125 loc) · 11.9 KB

README.md

File metadata and controls

149 lines (125 loc) · 11.9 KB

NLP Models For Indian Languages

Demo APIs

https://rapidapi.com/user/asamiasami2020

Github Main Repo

https://github.com/swapniljadhav1921/asamiasami

Google's Multilingual BERT is trained on Indian language's content having contribution <10%. Similarly, for GPT-3 which is the latest in the bunch has <7% content in other than English language. Over the years through experiments we observed that more the data & accurate the data, better the model ... irrespective of how big the model is. Original attention model by Vaswani with more data & hyper-parameter tuning held up very well against state-of-the-art models like BERT, GPT-2. minIndicBERT is the results of the same experimentation and trained only on Indian Languages specifically.

Languages Supported

'english', 'gujarati', 'nepali', 'malayalam', 'kannada', 'marathi', 'hindi', 'bangla', 'tamil', 'telugu', 'punjabi', 'urdu', 'oriya'

Requirements

Machine Instances Used

  • aws T4 single gpu instance - 16gb gpu (for hosting apis)
  • gtx 1070 - 8gb gpu
  • Ubuntu 16.04, tested on cuda 10.0

Data

  • indicTranslation - Opus http://opus.nlpl.eu/ + augmented data
  • minIndicBERT - Wikipedia dumps and free datasets found on github, reviews/comments web scrapped
  • minIndicLanguageDetector - reviews/comments web scrapped, used transliteration to augment data
  • minIndicNSFWDetector - free datasets available for slangs

Note

  • It is assumed that gpu will be used while running any code shared in this repo.
  • For running on cpu few code changes are required
    • .cpu() => This is not required and should be removed
    • model.cuda() => This is not required and should be removed
  • Repo download size will be ~18gb. It includes all model files .pt & some traning binaries(Not required but given for enthusiastic people to run for more epochs).
  • Most of the repo size due to lfs objects created. It takes time for decompression when you git clone.

indicTranslation

  • Trained at sentence level. Process in sample api code => text -> split in sentences -> translation.

  • English CASELESS text is used. It improves the model performance manyfold.

  • API Location => https://github.com/swapniljadhav1921/asamiasami/tree/main/indicTranslation

  • Hindi-2-English Translation Model

    • Model Location => https://github.com/swapniljadhav1921/asamiasami/tree/main/indicTranslation/hi_en_t2t_v3
    • Try out direct api here (same code as shared) => https://rapidapi.com/asamiasami2020/api/indictranslator-hindi-2-english/details
    • Run code locally => python indicTranslation_sample_code.py
    • BLEU Score Benchmark on Tatoeba DataSet
      • indicTranslation : #c5f015 49.07 [73.45, 55.02, 42.81, 33.51]
      • Google : 47.44 [73.16, 53.63, 40.88, 31.58]
      • HuggingFace : 40.04
    • Example
      Text => अपने करियर के 17 लिस्ट ए के मैचों में तारकाई ने 32.52 की औसत से 553 रन बनाए थे. इसके अलावा उन्होंने 33 टी-20 में उन्होंने 127.50 की स्ट्राइक रेट से 700 रन बनाए हैं. अफगानिस्तान के  
      दिग्गज स्पिनर राशिद खान ने भी ट्वीट कर अपना रिएक्शन दिया है. अफगानिस्तान क्रिकेट के लिए तारकाई उभरते हुए क्रिकेटर थे, टी-20 में तारकाई ने 4 अर्धशतक भी जमाए थे. तारकाई ने 2014 में इंटरनेशनल 
      क्रिकेट में डेब्यू किया था, अपने करियर में तराकाई ने 24 फर्स्ट क्लास मैच खेले और 2030 रन बनाए, फर्स्ट क्लास क्रिकेट में उनके नाम 6 शतक और 10 अर्धशतक शामिल है.
      
      Translation => tarakai scored 553 runs in 17 list a matches of his career at an average of 32.52. apart from this, he has scored 700 runs in 33 t20is at a strike rate of 
      127.50. afghanistan's legendary spinner rashid khan has also tweeted his reaction. tarakai was a rising cricketer for afghanistan cricket, tarakai also scored 4 half-
      centuries in t20is. tarakai made his international debut in 2014, tarakai played 24 first class matches in his career and scored 2030 runs, first class cricket 
      includes 6 centuries and 10 half-centuries to his name.
      
  • English-2-Hindi Translation Model

    • Model Location => https://github.com/swapniljadhav1921/asamiasami/tree/main/indicTranslation/en_hi_t2t_v3
    • Try out direct api here (same code as shared) => https://rapidapi.com/asamiasami2020/api/indictranslator-english-2-hindi/details
    • Run code locally => python indicTranslation_sample_code.py
    • BLEU Score Benchmark on Tatoeba DataSet
      • indicTranslation : #c5f01528.82 [61.37, 38.43, 25.62, 17.71]
      • Google : 23.51 [51.52, 29.38, 18.07, 11.16]
      • HuggingFace : 16.1
    • Example
      Text => Over the last three months, the spread of the pandemic has shifted from cities towards rural areas, potentially threatening the agriculture sector which has been the 
      one bright spot in the economy so far. At the end of June, 80% of the districts with more than 1,000 confirmed cases of COVID-19 were urban, while only 20% were rural. By the 
      end of September, the ratio had morphed. Of districts with over 1,000 cases, 53% are now rural, according to data analysed by CRISIL Research.
      
      Translation => पिछले तीन महीनों में महामारी का प्रसार शहरों से ग्रामीण क्षेत्रों की ओर स्थानांतरित हो गया है, संभावित रूप से कृषि क्षेत्र को खतरा है जो अब तक अर्थव्यवस्था में एक उज्ज्वल स्थान रहा है। जून के अंत 
      में कोविद 19 के 1,000 से अधिक पुष्ट मामलों वाले 80 फीसदी जिले शहरी थे, जबकि सिर्फ 20 फीसदी ग्रामीण थे। सितंबर के अंत तक अनुपात मॉर्फ्ड हो गया था। 1,000 से अधिक मामलों वाले जिलों में से 53% अब ग्रामीण 
      हैं, जो कि क्रिस्पिल रिसर्च द्वारा विश्लेषण किए गए आंकड़ों के अनुसार हैं।
      

minIndicBERT

CUDA_VISIBLE_DEVICES=0 fairseq-train --fp16 $DATA_DIR --task masked_lm --criterion masked_lm  --arch roberta_base --encoder-layers 4 --encoder-embed-dim 512 --encoder-ffn-embed-dim 
1024 --encoder-attention-heads 8 --sample-break-mode complete --tokens-per-sample $TOKENS_PER_SAMPLE --optimizer adam --adam-betas '(0.9,0.98)' --adam-eps 1e-6 --clip-norm 0.0 --lr-
scheduler polynomial_decay --lr $PEAK_LR --warmup-updates $WARMUP_UPDATES --total-num-update $TOTAL_UPDATES --dropout 0.1 --attention-dropout 0.1 --weight-decay 0.01 --max-sentences 
$MAX_SENTENCES --update-freq $UPDATE_FREQ --max-update $TOTAL_UPDATES --log-format simple --log-interval 1 --skip-invalid-size-inputs-valid-test

Process to Finetune

TOTAL_NUM_UPDATES=1000000
WARMUP_UPDATES=5000
LR=1e-05
HEAD_NAME=GIVE_SOME_UNIQ_NAME ### Later to be used in python code 
NUM_CLASSES=2
MAX_SENTENCES=64
ROBERTA_PATH=/minIndicBERT/model/path/*.pt

cd fairseq_installation_path

CUDA_VISIBLE_DEVICES=0 python train.py /path/bin_data/ --restore-file $ROBERTA_PATH --max-positions 512 --max-sentences $MAX_SENTENCES  --max-tokens 32768 --task sentence_prediction 
--reset-optimizer --reset-dataloader --reset-meters --required-batch-size-multiple 1 --init-token 0 --separator-token 2 --arch roberta_base --encoder-layers 4 --encoder-embed-dim 512 
--encoder-ffn-embed-dim 1024 --encoder-attention-heads 8 --criterion sentence_prediction --classification-head-name $HEAD_NAME --num-classes $NUM_CLASSES --dropout 0.1 --attention-
dropout 0.1 --weight-decay 0.1 --optimizer adam --adam-betas "(0.9, 0.98)" --adam-eps 1e-06 --clip-norm 0.0 --lr-scheduler polynomial_decay --lr $LR --total-num-update 
$TOTAL_NUM_UPDATES --warmup-updates $WARMUP_UPDATES --fp16 --fp16-init-scale 4 --threshold-loss-scale 1 --fp16-scale-window 128 --max-epoch 16 --best-checkpoint-metric accuracy 
--maximize-best-checkpoint-metric --find-unused-parameters  --update-freq 8 --skip-invalid-size-inputs-valid-test

minIndicLanguageDetector

minIndicNSFWDetector

indicSummarizer (Coming Soon ...)

indicNER (Coming Soon ...)