forked from philippgille/chromem-go
-
Notifications
You must be signed in to change notification settings - Fork 0
/
embed_openai.go
161 lines (140 loc) · 5.33 KB
/
embed_openai.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
package chromem
import (
"bytes"
"context"
"encoding/json"
"errors"
"fmt"
"io"
"net/http"
"os"
"sync"
)
const BaseURLOpenAI = "https://api.openai.com/v1"
type EmbeddingModelOpenAI string
const (
EmbeddingModelOpenAI2Ada EmbeddingModelOpenAI = "text-embedding-ada-002"
EmbeddingModelOpenAI3Small EmbeddingModelOpenAI = "text-embedding-3-small"
EmbeddingModelOpenAI3Large EmbeddingModelOpenAI = "text-embedding-3-large"
)
type openAIResponse struct {
Data []struct {
Embedding []float32 `json:"embedding"`
} `json:"data"`
}
// NewEmbeddingFuncDefault returns a function that creates embeddings for a text
// using OpenAI`s "text-embedding-3-small" model via their API.
// The model supports a maximum text length of 8191 tokens.
// The API key is read from the environment variable "OPENAI_API_KEY".
func NewEmbeddingFuncDefault() EmbeddingFunc {
apiKey := os.Getenv("OPENAI_API_KEY")
return NewEmbeddingFuncOpenAI(apiKey, EmbeddingModelOpenAI3Small)
}
// NewEmbeddingFuncOpenAI returns a function that creates embeddings for a text
// using the OpenAI API.
func NewEmbeddingFuncOpenAI(apiKey string, model EmbeddingModelOpenAI) EmbeddingFunc {
// OpenAI embeddings are normalized
normalized := true
return NewEmbeddingFuncOpenAICompat(BaseURLOpenAI, apiKey, string(model), &normalized)
}
// NewEmbeddingFuncOpenAICompat returns a function that creates embeddings for a text
// using an OpenAI compatible API. For example:
// - Azure OpenAI: https://azure.microsoft.com/en-us/products/ai-services/openai-service
// - LitLLM: https://github.com/BerriAI/litellm
// - Ollama: https://github.com/ollama/ollama/blob/main/docs/openai.md
// - etc.
//
// The `normalized` parameter indicates whether the vectors returned by the embedding
// model are already normalized, as is the case for OpenAI's and Mistral's models.
// The flag is optional. If it's nil, it will be autodetected on the first request
// (which bears a small risk that the vector just happens to have a length of 1).
func NewEmbeddingFuncOpenAICompat(baseURL, apiKey, model string, normalized *bool) EmbeddingFunc {
return newEmbeddingFuncOpenAICompat(baseURL, apiKey, model, normalized, nil, nil)
}
// newEmbeddingFuncOpenAICompat returns a function that creates embeddings for a text
// using an OpenAI compatible API.
// It offers options to set request headers and query parameters
// e.g. to pass the `api-key` header and the `api-version` query parameter for Azure OpenAI.
//
// The `normalized` parameter indicates whether the vectors returned by the embedding
// model are already normalized, as is the case for OpenAI's and Mistral's models.
// The flag is optional. If it's nil, it will be autodetected on the first request
// (which bears a small risk that the vector just happens to have a length of 1).
func newEmbeddingFuncOpenAICompat(baseURL, apiKey, model string, normalized *bool, headers map[string]string, queryParams map[string]string) EmbeddingFunc {
// We don't set a default timeout here, although it's usually a good idea.
// In our case though, the library user can set the timeout on the context,
// and it might have to be a long timeout, depending on the text length.
client := &http.Client{}
var checkedNormalized bool
checkNormalized := sync.Once{}
return func(ctx context.Context, text string) ([]float32, error) {
// Prepare the request body.
reqBody, err := json.Marshal(map[string]string{
"input": text,
"model": model,
})
if err != nil {
return nil, fmt.Errorf("couldn't marshal request body: %w", err)
}
// Create the request. Creating it with context is important for a timeout
// to be possible, because the client is configured without a timeout.
req, err := http.NewRequestWithContext(ctx, "POST", baseURL+"/embeddings", bytes.NewBuffer(reqBody))
if err != nil {
return nil, fmt.Errorf("couldn't create request: %w", err)
}
req.Header.Set("Content-Type", "application/json")
req.Header.Set("Authorization", "Bearer "+apiKey)
// Add headers
for k, v := range headers {
req.Header.Add(k, v)
}
// Add query parameters
q := req.URL.Query()
for k, v := range queryParams {
q.Add(k, v)
}
req.URL.RawQuery = q.Encode()
// Send the request.
resp, err := client.Do(req)
if err != nil {
return nil, fmt.Errorf("couldn't send request: %w", err)
}
defer resp.Body.Close()
// Check the response status.
if resp.StatusCode != http.StatusOK {
return nil, errors.New("error response from the embedding API: " + resp.Status)
}
// Read and decode the response body.
body, err := io.ReadAll(resp.Body)
if err != nil {
return nil, fmt.Errorf("couldn't read response body: %w", err)
}
var embeddingResponse openAIResponse
err = json.Unmarshal(body, &embeddingResponse)
if err != nil {
return nil, fmt.Errorf("couldn't unmarshal response body: %w", err)
}
// Check if the response contains embeddings.
if len(embeddingResponse.Data) == 0 || len(embeddingResponse.Data[0].Embedding) == 0 {
return nil, errors.New("no embeddings found in the response")
}
v := embeddingResponse.Data[0].Embedding
if normalized != nil {
if *normalized {
return v, nil
}
return normalizeVector(v), nil
}
checkNormalized.Do(func() {
if isNormalized(v) {
checkedNormalized = true
} else {
checkedNormalized = false
}
})
if !checkedNormalized {
v = normalizeVector(v)
}
return v, nil
}
}