forked from vamp-plugins/vamp-plugin-sdk
-
Notifications
You must be signed in to change notification settings - Fork 0
/
FixedTempoEstimator.cpp
727 lines (564 loc) · 18.3 KB
/
FixedTempoEstimator.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
/* -*- c-basic-offset: 4 indent-tabs-mode: nil -*- vi:set ts=8 sts=4 sw=4: */
/*
Vamp
An API for audio analysis and feature extraction plugins.
Centre for Digital Music, Queen Mary, University of London.
Copyright 2006-2009 Chris Cannam and QMUL.
Permission is hereby granted, free of charge, to any person
obtaining a copy of this software and associated documentation
files (the "Software"), to deal in the Software without
restriction, including without limitation the rights to use, copy,
modify, merge, publish, distribute, sublicense, and/or sell copies
of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be
included in all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS BE LIABLE FOR
ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF
CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
Except as contained in this notice, the names of the Centre for
Digital Music; Queen Mary, University of London; and Chris Cannam
shall not be used in advertising or otherwise to promote the sale,
use or other dealings in this Software without prior written
authorization.
*/
#include "FixedTempoEstimator.h"
using std::string;
using std::vector;
using std::cerr;
using std::endl;
using Vamp::RealTime;
#include <cmath>
#include <cstdio>
class FixedTempoEstimator::D
// this class just avoids us having to declare any data members in the header
{
public:
D(float inputSampleRate);
~D();
size_t getPreferredStepSize() const { return 64; }
size_t getPreferredBlockSize() const { return 256; }
ParameterList getParameterDescriptors() const;
float getParameter(string id) const;
void setParameter(string id, float value);
OutputList getOutputDescriptors() const;
bool initialise(size_t channels, size_t stepSize, size_t blockSize);
void reset();
FeatureSet process(const float *const *, RealTime);
FeatureSet getRemainingFeatures();
private:
void calculate();
FeatureSet assembleFeatures();
float lag2tempo(int);
int tempo2lag(float);
float m_inputSampleRate;
size_t m_stepSize;
size_t m_blockSize;
float m_minbpm;
float m_maxbpm;
float m_maxdflen;
float *m_priorMagnitudes;
size_t m_dfsize;
float *m_df;
float *m_r;
float *m_fr;
float *m_t;
size_t m_n;
Vamp::RealTime m_start;
Vamp::RealTime m_lasttime;
};
FixedTempoEstimator::D::D(float inputSampleRate) :
m_inputSampleRate(inputSampleRate),
m_stepSize(0),
m_blockSize(0),
m_minbpm(50),
m_maxbpm(190),
m_maxdflen(10),
m_priorMagnitudes(0),
m_df(0),
m_r(0),
m_fr(0),
m_t(0),
m_n(0)
{
}
FixedTempoEstimator::D::~D()
{
delete[] m_priorMagnitudes;
delete[] m_df;
delete[] m_r;
delete[] m_fr;
delete[] m_t;
}
FixedTempoEstimator::ParameterList
FixedTempoEstimator::D::getParameterDescriptors() const
{
ParameterList list;
ParameterDescriptor d;
d.identifier = "minbpm";
d.name = "Minimum estimated tempo";
d.description = "Minimum beat-per-minute value which the tempo estimator is able to return";
d.unit = "bpm";
d.minValue = 10;
d.maxValue = 360;
d.defaultValue = 50;
d.isQuantized = false;
list.push_back(d);
d.identifier = "maxbpm";
d.name = "Maximum estimated tempo";
d.description = "Maximum beat-per-minute value which the tempo estimator is able to return";
d.defaultValue = 190;
list.push_back(d);
d.identifier = "maxdflen";
d.name = "Input duration to study";
d.description = "Length of audio input, in seconds, which should be taken into account when estimating tempo. There is no need to supply the plugin with any further input once this time has elapsed since the start of the audio. The tempo estimator may use only the first part of this, up to eight times the slowest beat duration: increasing this value further than that is unlikely to improve results.";
d.unit = "s";
d.minValue = 2;
d.maxValue = 40;
d.defaultValue = 10;
list.push_back(d);
return list;
}
float
FixedTempoEstimator::D::getParameter(string id) const
{
if (id == "minbpm") {
return m_minbpm;
} else if (id == "maxbpm") {
return m_maxbpm;
} else if (id == "maxdflen") {
return m_maxdflen;
}
return 0.f;
}
void
FixedTempoEstimator::D::setParameter(string id, float value)
{
if (id == "minbpm") {
m_minbpm = value;
} else if (id == "maxbpm") {
m_maxbpm = value;
} else if (id == "maxdflen") {
m_maxdflen = value;
}
}
static int TempoOutput = 0;
static int CandidatesOutput = 1;
static int DFOutput = 2;
static int ACFOutput = 3;
static int FilteredACFOutput = 4;
FixedTempoEstimator::OutputList
FixedTempoEstimator::D::getOutputDescriptors() const
{
OutputList list;
OutputDescriptor d;
d.identifier = "tempo";
d.name = "Tempo";
d.description = "Estimated tempo";
d.unit = "bpm";
d.hasFixedBinCount = true;
d.binCount = 1;
d.hasKnownExtents = false;
d.isQuantized = false;
d.sampleType = OutputDescriptor::VariableSampleRate;
d.sampleRate = m_inputSampleRate;
d.hasDuration = true; // our returned tempo spans a certain range
list.push_back(d);
d.identifier = "candidates";
d.name = "Tempo candidates";
d.description = "Possible tempo estimates, one per bin with the most likely in the first bin";
d.unit = "bpm";
d.hasFixedBinCount = false;
list.push_back(d);
d.identifier = "detectionfunction";
d.name = "Detection Function";
d.description = "Onset detection function";
d.unit = "";
d.hasFixedBinCount = 1;
d.binCount = 1;
d.hasKnownExtents = true;
d.minValue = 0.0;
d.maxValue = 1.0;
d.isQuantized = false;
d.quantizeStep = 0.0;
d.sampleType = OutputDescriptor::FixedSampleRate;
if (m_stepSize) {
d.sampleRate = m_inputSampleRate / m_stepSize;
} else {
d.sampleRate = m_inputSampleRate / (getPreferredBlockSize()/2);
}
d.hasDuration = false;
list.push_back(d);
d.identifier = "acf";
d.name = "Autocorrelation Function";
d.description = "Autocorrelation of onset detection function";
d.hasKnownExtents = false;
d.unit = "r";
list.push_back(d);
d.identifier = "filtered_acf";
d.name = "Filtered Autocorrelation";
d.description = "Filtered autocorrelation of onset detection function";
d.unit = "r";
list.push_back(d);
return list;
}
bool
FixedTempoEstimator::D::initialise(size_t, size_t stepSize, size_t blockSize)
{
m_stepSize = stepSize;
m_blockSize = blockSize;
float dfLengthSecs = m_maxdflen;
m_dfsize = (dfLengthSecs * m_inputSampleRate) / m_stepSize;
m_priorMagnitudes = new float[m_blockSize/2];
m_df = new float[m_dfsize];
for (size_t i = 0; i < m_blockSize/2; ++i) {
m_priorMagnitudes[i] = 0.f;
}
for (size_t i = 0; i < m_dfsize; ++i) {
m_df[i] = 0.f;
}
m_n = 0;
return true;
}
void
FixedTempoEstimator::D::reset()
{
if (!m_priorMagnitudes) return;
for (size_t i = 0; i < m_blockSize/2; ++i) {
m_priorMagnitudes[i] = 0.f;
}
for (size_t i = 0; i < m_dfsize; ++i) {
m_df[i] = 0.f;
}
delete[] m_r;
m_r = 0;
delete[] m_fr;
m_fr = 0;
delete[] m_t;
m_t = 0;
m_n = 0;
m_start = RealTime::zeroTime;
m_lasttime = RealTime::zeroTime;
}
FixedTempoEstimator::FeatureSet
FixedTempoEstimator::D::process(const float *const *inputBuffers, RealTime ts)
{
FeatureSet fs;
if (m_stepSize == 0) {
cerr << "ERROR: FixedTempoEstimator::process: "
<< "FixedTempoEstimator has not been initialised"
<< endl;
return fs;
}
if (m_n == 0) m_start = ts;
m_lasttime = ts;
if (m_n == m_dfsize) {
// If we have seen enough input, do the estimation and return
calculate();
fs = assembleFeatures();
++m_n;
return fs;
}
// If we have seen more than enough, just discard and return!
if (m_n > m_dfsize) return FeatureSet();
float value = 0.f;
// m_df will contain an onset detection function based on the rise
// in overall power from one spectral frame to the next --
// simplistic but reasonably effective for our purposes.
for (size_t i = 1; i < m_blockSize/2; ++i) {
float real = inputBuffers[0][i*2];
float imag = inputBuffers[0][i*2 + 1];
float sqrmag = real * real + imag * imag;
value += fabsf(sqrmag - m_priorMagnitudes[i]);
m_priorMagnitudes[i] = sqrmag;
}
m_df[m_n] = value;
++m_n;
return fs;
}
FixedTempoEstimator::FeatureSet
FixedTempoEstimator::D::getRemainingFeatures()
{
FeatureSet fs;
if (m_n > m_dfsize) return fs;
calculate();
fs = assembleFeatures();
++m_n;
return fs;
}
float
FixedTempoEstimator::D::lag2tempo(int lag)
{
return 60.f / ((lag * m_stepSize) / m_inputSampleRate);
}
int
FixedTempoEstimator::D::tempo2lag(float tempo)
{
return ((60.f / tempo) * m_inputSampleRate) / m_stepSize;
}
void
FixedTempoEstimator::D::calculate()
{
if (m_r) {
cerr << "FixedTempoEstimator::calculate: calculation already happened?" << endl;
return;
}
if (m_n < m_dfsize / 9 &&
m_n < (1.0 * m_inputSampleRate) / m_stepSize) { // 1 second
cerr << "FixedTempoEstimator::calculate: Input is too short" << endl;
return;
}
// This function takes m_df (the detection function array filled
// out in process()) and calculates m_r (the raw autocorrelation)
// and m_fr (the filtered autocorrelation from whose peaks tempo
// estimates will be taken).
int n = m_n; // length of actual df array (m_dfsize is the theoretical max)
m_r = new float[n/2]; // raw autocorrelation
m_fr = new float[n/2]; // filtered autocorrelation
m_t = new float[n/2]; // averaged tempo estimate for each lag value
for (int i = 0; i < n/2; ++i) {
m_r[i] = 0.f;
m_fr[i] = 0.f;
m_t[i] = lag2tempo(i);
}
// Calculate the raw autocorrelation of the detection function
for (int i = 0; i < n/2; ++i) {
for (int j = i; j < n; ++j) {
m_r[i] += m_df[j] * m_df[j - i];
}
m_r[i] /= n - i - 1;
}
// Filter the autocorrelation and average out the tempo estimates
float related[] = { 0.5, 2, 4, 8 };
for (int i = 1; i < n/2-1; ++i) {
m_fr[i] = m_r[i];
int div = 1;
for (int j = 0; j < int(sizeof(related)/sizeof(related[0])); ++j) {
// Check for an obvious peak at each metrically related lag
int k0 = int(i * related[j] + 0.5);
if (k0 >= 0 && k0 < int(n/2)) {
int kmax = 0;
float kvmax = 0, kvmin = 0;
bool have = false;
for (int k = k0 - 1; k <= k0 + 1; ++k) {
if (k < 0 || k >= n/2) continue;
if (!have || (m_r[k] > kvmax)) { kvmax = m_r[k]; kmax = k; }
if (!have || (m_r[k] < kvmin)) { kvmin = m_r[k]; }
have = true;
}
// Boost the original lag according to the strongest
// value found close to this related lag
m_fr[i] += m_r[kmax] / 5;
if ((kmax == 0 || m_r[kmax] > m_r[kmax-1]) &&
(kmax == n/2-1 || m_r[kmax] > m_r[kmax+1]) &&
kvmax > kvmin * 1.05) {
// The strongest value close to the related lag is
// also a pretty good looking peak, so use it to
// improve our tempo estimate for the original lag
m_t[i] = m_t[i] + lag2tempo(kmax) * related[j];
++div;
}
}
}
m_t[i] /= div;
// Finally apply a primitive perceptual weighting (to prefer
// tempi of around 120-130)
float weight = 1.f - fabsf(128.f - lag2tempo(i)) * 0.005;
if (weight < 0.f) weight = 0.f;
weight = weight * weight * weight;
m_fr[i] += m_fr[i] * (weight / 3);
}
}
FixedTempoEstimator::FeatureSet
FixedTempoEstimator::D::assembleFeatures()
{
FeatureSet fs;
if (!m_r) return fs; // No autocorrelation: no results
Feature feature;
feature.hasTimestamp = true;
feature.hasDuration = false;
feature.label = "";
feature.values.clear();
feature.values.push_back(0.f);
char buffer[40];
int n = m_n;
for (int i = 0; i < n; ++i) {
// Return the detection function in the DF output
feature.timestamp = m_start +
RealTime::frame2RealTime(i * m_stepSize, m_inputSampleRate);
feature.values[0] = m_df[i];
feature.label = "";
fs[DFOutput].push_back(feature);
}
for (int i = 1; i < n/2; ++i) {
// Return the raw autocorrelation in the ACF output, each
// value labelled according to its corresponding tempo
feature.timestamp = m_start +
RealTime::frame2RealTime(i * m_stepSize, m_inputSampleRate);
feature.values[0] = m_r[i];
sprintf(buffer, "%.1f bpm", lag2tempo(i));
if (i == n/2-1) feature.label = "";
else feature.label = buffer;
fs[ACFOutput].push_back(feature);
}
float t0 = m_minbpm; // our minimum detected tempo
float t1 = m_maxbpm; // our maximum detected tempo
int p0 = tempo2lag(t1);
int p1 = tempo2lag(t0);
std::map<float, int> candidates;
for (int i = p0; i <= p1 && i+1 < n/2; ++i) {
if (i < 1) continue;
if (m_fr[i] > m_fr[i-1] &&
m_fr[i] > m_fr[i+1]) {
// This is a peak in the filtered autocorrelation: stick
// it into the map from filtered autocorrelation to lag
// index -- this sorts our peaks by filtered acf value
candidates[m_fr[i]] = i;
}
// Also return the filtered autocorrelation in its own output
feature.timestamp = m_start +
RealTime::frame2RealTime(i * m_stepSize, m_inputSampleRate);
feature.values[0] = m_fr[i];
sprintf(buffer, "%.1f bpm", lag2tempo(i));
if (i == p1 || i == n/2-2) feature.label = "";
else feature.label = buffer;
fs[FilteredACFOutput].push_back(feature);
}
if (candidates.empty()) {
cerr << "No tempo candidates!" << endl;
return fs;
}
feature.hasTimestamp = true;
feature.timestamp = m_start;
feature.hasDuration = true;
feature.duration = m_lasttime - m_start;
// The map contains only peaks and is sorted by filtered acf
// value, so the final element in it is our "best" tempo guess
std::map<float, int>::const_iterator ci = candidates.end();
--ci;
int maxpi = ci->second;
if (m_t[maxpi] > 0) {
// This lag has an adjusted tempo from the averaging process:
// use it
feature.values[0] = m_t[maxpi];
} else {
// shouldn't happen -- it would imply that this high value was
// not a peak!
feature.values[0] = lag2tempo(maxpi);
cerr << "WARNING: No stored tempo for index " << maxpi << endl;
}
sprintf(buffer, "%.1f bpm", feature.values[0]);
feature.label = buffer;
// Return the best tempo in the main output
fs[TempoOutput].push_back(feature);
// And return the other estimates (up to the arbitrarily chosen
// number of 10 of them) in the candidates output
feature.values.clear();
feature.label = "";
while (feature.values.size() < 10) {
if (m_t[ci->second] > 0) {
feature.values.push_back(m_t[ci->second]);
} else {
feature.values.push_back(lag2tempo(ci->second));
}
if (ci == candidates.begin()) break;
--ci;
}
fs[CandidatesOutput].push_back(feature);
return fs;
}
FixedTempoEstimator::FixedTempoEstimator(float inputSampleRate) :
Plugin(inputSampleRate),
m_d(new D(inputSampleRate))
{
}
FixedTempoEstimator::~FixedTempoEstimator()
{
delete m_d;
}
string
FixedTempoEstimator::getIdentifier() const
{
return "fixedtempo";
}
string
FixedTempoEstimator::getName() const
{
return "Simple Fixed Tempo Estimator";
}
string
FixedTempoEstimator::getDescription() const
{
return "Study a short section of audio and estimate its tempo, assuming the tempo is constant";
}
string
FixedTempoEstimator::getMaker() const
{
return "Vamp SDK Example Plugins";
}
int
FixedTempoEstimator::getPluginVersion() const
{
return 1;
}
string
FixedTempoEstimator::getCopyright() const
{
return "Code copyright 2008 Queen Mary, University of London. Freely redistributable (BSD license)";
}
size_t
FixedTempoEstimator::getPreferredStepSize() const
{
return m_d->getPreferredStepSize();
}
size_t
FixedTempoEstimator::getPreferredBlockSize() const
{
return m_d->getPreferredBlockSize();
}
bool
FixedTempoEstimator::initialise(size_t channels, size_t stepSize, size_t blockSize)
{
if (channels < getMinChannelCount() ||
channels > getMaxChannelCount()) return false;
return m_d->initialise(channels, stepSize, blockSize);
}
void
FixedTempoEstimator::reset()
{
return m_d->reset();
}
FixedTempoEstimator::ParameterList
FixedTempoEstimator::getParameterDescriptors() const
{
return m_d->getParameterDescriptors();
}
float
FixedTempoEstimator::getParameter(std::string id) const
{
return m_d->getParameter(id);
}
void
FixedTempoEstimator::setParameter(std::string id, float value)
{
m_d->setParameter(id, value);
}
FixedTempoEstimator::OutputList
FixedTempoEstimator::getOutputDescriptors() const
{
return m_d->getOutputDescriptors();
}
FixedTempoEstimator::FeatureSet
FixedTempoEstimator::process(const float *const *inputBuffers, RealTime ts)
{
return m_d->process(inputBuffers, ts);
}
FixedTempoEstimator::FeatureSet
FixedTempoEstimator::getRemainingFeatures()
{
return m_d->getRemainingFeatures();
}