forked from haotian-liu/LLaVA
-
Notifications
You must be signed in to change notification settings - Fork 0
/
builder.py
237 lines (213 loc) · 9.43 KB
/
builder.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
# Copyright 2023 Haotian Liu
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import warnings
import shutil
import sys
# sys.path.append("LLaVA/")
# sys.path.append("LLaVA/llava/")
from transformers import (
AutoTokenizer,
AutoModelForCausalLM,
AutoConfig,
BitsAndBytesConfig,
)
import torch
from llava.model import *
from llava.constants import (
DEFAULT_IMAGE_PATCH_TOKEN,
DEFAULT_IM_START_TOKEN,
DEFAULT_IM_END_TOKEN,
)
def load_pretrained_model(
model_path,
model_base,
model_name,
load_8bit=False,
load_4bit=False,
device_map="auto",
device="cuda",
use_flash_attn=False,
**kwargs,
):
kwargs = {"device_map": device_map, **kwargs}
if device != "cuda":
kwargs["device_map"] = {"": device}
if load_8bit:
kwargs["load_in_8bit"] = True
elif load_4bit:
kwargs["load_in_4bit"] = True
kwargs["quantization_config"] = BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_compute_dtype=torch.float16,
bnb_4bit_use_double_quant=True,
bnb_4bit_quant_type="nf4",
)
else:
kwargs["torch_dtype"] = torch.float16
if use_flash_attn:
kwargs["attn_implementation"] = "flash_attention_2"
if "llava" in model_name.lower():
# Load LLaVA model
if "lora" in model_name.lower() and model_base is None:
warnings.warn(
"There is `lora` in model name but no `model_base` is provided. If you are loading a LoRA model, please provide the `model_base` argument. Detailed instruction: https://github.com/haotian-liu/LLaVA#launch-a-model-worker-lora-weights-unmerged."
)
if "lora" in model_name.lower() and model_base is not None:
from llava.model.language_model.llava_llama import LlavaConfig
lora_cfg_pretrained = LlavaConfig.from_pretrained(model_path)
tokenizer = AutoTokenizer.from_pretrained(model_base, use_fast=False)
print("Loading LLaVA from base model...")
model = LlavaLlamaForCausalLM.from_pretrained(
model_base, low_cpu_mem_usage=True, config=lora_cfg_pretrained, **kwargs
)
token_num, tokem_dim = model.lm_head.out_features, model.lm_head.in_features
if model.lm_head.weight.shape[0] != token_num:
model.lm_head.weight = torch.nn.Parameter(
torch.empty(
token_num, tokem_dim, device=model.device, dtype=model.dtype
)
)
model.model.embed_tokens.weight = torch.nn.Parameter(
torch.empty(
token_num, tokem_dim, device=model.device, dtype=model.dtype
)
)
print("Loading additional LLaVA weights...")
if os.path.exists(os.path.join(model_path, "non_lora_trainables.bin")):
non_lora_trainables = torch.load(
os.path.join(model_path, "non_lora_trainables.bin"),
map_location="cpu",
)
else:
# this is probably from HF Hub
from huggingface_hub import hf_hub_download
def load_from_hf(repo_id, filename, subfolder=None):
cache_file = hf_hub_download(
repo_id=repo_id, filename=filename, subfolder=subfolder
)
return torch.load(cache_file, map_location="cpu")
non_lora_trainables = load_from_hf(
model_path, "non_lora_trainables.bin"
)
non_lora_trainables = {
(k[11:] if k.startswith("base_model.") else k): v
for k, v in non_lora_trainables.items()
}
if any(k.startswith("model.model.") for k in non_lora_trainables):
non_lora_trainables = {
(k[6:] if k.startswith("model.") else k): v
for k, v in non_lora_trainables.items()
}
model.load_state_dict(non_lora_trainables, strict=False)
from peft import PeftModel
print("Loading LoRA weights...")
model = PeftModel.from_pretrained(model, model_path)
print("Merging LoRA weights...")
model = model.merge_and_unload()
print("Model is loaded...")
elif model_base is not None:
# this may be mm projector only
print("Loading LLaVA from base model...")
if "mpt" in model_name.lower():
if not os.path.isfile(os.path.join(model_path, "configuration_mpt.py")):
shutil.copyfile(
os.path.join(model_base, "configuration_mpt.py"),
os.path.join(model_path, "configuration_mpt.py"),
)
tokenizer = AutoTokenizer.from_pretrained(model_base, use_fast=True)
cfg_pretrained = AutoConfig.from_pretrained(
model_path, trust_remote_code=True
)
model = LlavaMptForCausalLM.from_pretrained(
model_base, low_cpu_mem_usage=True, config=cfg_pretrained, **kwargs
)
else:
tokenizer = AutoTokenizer.from_pretrained(model_base, use_fast=False)
cfg_pretrained = AutoConfig.from_pretrained(model_path)
model = LlavaLlamaForCausalLM.from_pretrained(
model_base, low_cpu_mem_usage=True, config=cfg_pretrained, **kwargs
)
mm_projector_weights = torch.load(
os.path.join(model_path, "mm_projector.bin"), map_location="cpu"
)
mm_projector_weights = {
k: v.to(torch.float16) for k, v in mm_projector_weights.items()
}
model.load_state_dict(mm_projector_weights, strict=False)
else:
if "mpt" in model_name.lower():
tokenizer = AutoTokenizer.from_pretrained(model_path, use_fast=True)
model = LlavaMptForCausalLM.from_pretrained(
model_path, low_cpu_mem_usage=True, **kwargs
)
elif "mistral" in model_name.lower():
tokenizer = AutoTokenizer.from_pretrained(model_path)
model = LlavaMistralForCausalLM.from_pretrained(
model_path, low_cpu_mem_usage=True, **kwargs
)
else:
tokenizer = AutoTokenizer.from_pretrained(model_path, use_fast=False)
model = LlavaLlamaForCausalLM.from_pretrained(
model_path, low_cpu_mem_usage=True, **kwargs
)
else:
# Load language model
if model_base is not None:
# PEFT model
from peft import PeftModel
tokenizer = AutoTokenizer.from_pretrained(model_base, use_fast=False)
model = AutoModelForCausalLM.from_pretrained(
model_base, low_cpu_mem_usage=True, **kwargs
)
print(f"Loading LoRA weights from {model_path}")
model = PeftModel.from_pretrained(model, model_path)
print(f"Merging weights")
model = model.merge_and_unload()
print("Convert to FP16...")
model.to(torch.float16)
else:
use_fast = False
if "mpt" in model_name.lower():
tokenizer = AutoTokenizer.from_pretrained(model_path, use_fast=True)
model = AutoModelForCausalLM.from_pretrained(
model_path, low_cpu_mem_usage=True, trust_remote_code=True, **kwargs
)
else:
tokenizer = AutoTokenizer.from_pretrained(model_path, use_fast=False)
model = AutoModelForCausalLM.from_pretrained(
model_path, low_cpu_mem_usage=True, **kwargs
)
image_processor = None
if "llava" in model_name.lower():
mm_use_im_start_end = getattr(model.config, "mm_use_im_start_end", False)
mm_use_im_patch_token = getattr(model.config, "mm_use_im_patch_token", True)
if mm_use_im_patch_token:
tokenizer.add_tokens([DEFAULT_IMAGE_PATCH_TOKEN], special_tokens=True)
if mm_use_im_start_end:
tokenizer.add_tokens(
[DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN], special_tokens=True
)
model.resize_token_embeddings(len(tokenizer))
vision_tower = model.get_vision_tower()
if not vision_tower.is_loaded:
vision_tower.load_model(device_map=device_map)
if device_map != "auto":
vision_tower.to(device=device_map, dtype=torch.float16)
image_processor = vision_tower.image_processor
if hasattr(model.config, "max_sequence_length"):
context_len = model.config.max_sequence_length
else:
context_len = 2048
return tokenizer, model, image_processor, context_len