-
Notifications
You must be signed in to change notification settings - Fork 76
/
train.py
296 lines (235 loc) · 13 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
import os
import time
import torch
import torch.nn.functional as F
import torchvision.transforms as T
import torchvision.transforms.functional as TF
from pathlib import Path
from accelerate import Accelerator
from accelerate.utils import ProjectConfiguration
from diffusers import AutoencoderKL, DDPMScheduler, UNet2DConditionModel
from transformers import CLIPTextModel, CLIPTokenizer, CLIPVisionModelWithProjection
from tqdm import tqdm
from utils import parse_args, collate_fn, MyDataset
from attention import Consistent_IPAttProcessor, Consistent_AttProcessor
from attention import FacialEncoder
from functions import ProjPlusModel, BalancedL1Loss, unet_store_cross_attention_scores, get_object_localization_loss
exp_name = 'ConsistentID'
initial_epoch = 0
class ConsistentID(torch.nn.Module):
"""ConsistentID"""
def __init__(self, unet, image_proj_model, adapter_modules, facial_encoder):
super().__init__()
self.unet = unet
self.image_proj_model = image_proj_model
self.adapter_modules = adapter_modules
self.FacialEncoder = facial_encoder
### attention loss
self.cross_attention_scores = {}
self.localization_layers = 5
self.facial_weight = 0.01
self.mask_loss_prob = 0.5
self.unet = unet_store_cross_attention_scores(
self.unet, self.cross_attention_scores, self.localization_layers
)
self.object_localization_loss_fn = BalancedL1Loss(threshold=1.0, normalize=True)
def forward(self, noisy_latents, timesteps, prompt_embeds, image_embeds, faceid_embeds, \
multi_facial_embeds, facial_token_masks, valid_facial_token_idx_mask, \
noise, parsing_mask_lists, facial_masks, facial_token_idxs, facial_token_idx_masks):
### Overall Feature
faceid_tokens = self.image_proj_model(faceid_embeds, image_embeds)
### Fine-grained Feature
prompt_id_embeds = self.FacialEncoder(prompt_embeds, multi_facial_embeds, facial_token_masks, valid_facial_token_idx_mask)
### Final Features
prompt_id_embeds = torch.cat([prompt_id_embeds, faceid_tokens], dim=1)
noise_pred = self.unet(noisy_latents, timesteps, prompt_id_embeds).sample
#### Random Mask
target=noise
pred=noise_pred
loss_dict = {"background_loss": 0}
if torch.rand(1) < self.mask_loss_prob:
try:
mask_list = [TF.to_tensor(image['WithoutBackground']).unsqueeze(0) for image in parsing_mask_lists]
mask_stacked = torch.cat(mask_list, dim=0)
mask_final = F.interpolate(mask_stacked,size=(pred.shape[-2], pred.shape[-1]),mode="bilinear",align_corners=False,)
pred = pred * mask_final.to(pred.device, dtype=pred.dtype)
target = target * mask_final.to(target.device, dtype=target.dtype)
background_loss = F.mse_loss(pred.float(), target.float(), reduction="mean")
loss_dict["background_loss"] = background_loss
except:
print(f"The fail 'Background' of parsing_mask_lists: {parsing_mask_lists}")
predict_loss = F.mse_loss(pred.float(), target.float(), reduction="mean")
loss_dict["predict_loss"] = predict_loss
### Attention Loss
loss_dict["facial_loss"] = 0
object_segmaps = facial_masks
image_token_idx = facial_token_idxs
image_token_idx_mask = facial_token_idx_masks
facial_loss = get_object_localization_loss(
self.cross_attention_scores,
object_segmaps,
image_token_idx,
image_token_idx_mask,
self.object_localization_loss_fn,
)
facial_loss = self.facial_weight * facial_loss
loss_dict["facial_loss"]=facial_loss
return pred, loss_dict
def main():
args = parse_args()
logging_dir = Path(args.output_dir, args.logging_dir)
accelerator_project_config = ProjectConfiguration(project_dir=args.output_dir, logging_dir=logging_dir)
accelerator = Accelerator(
mixed_precision=args.mixed_precision,
log_with=args.report_to,
project_config=accelerator_project_config,
)
if accelerator.is_main_process:
if args.output_dir is not None:
os.makedirs(args.output_dir, exist_ok=True)
# Load scheduler, tokenizer and models.
noise_scheduler = DDPMScheduler.from_pretrained(args.pretrained_model_name_or_path, subfolder="scheduler")
tokenizer = CLIPTokenizer.from_pretrained(args.pretrained_model_name_or_path, subfolder="tokenizer")
text_encoder = CLIPTextModel.from_pretrained(args.pretrained_model_name_or_path, subfolder="text_encoder")
vae = AutoencoderKL.from_pretrained(args.pretrained_model_name_or_path, subfolder="vae")
unet = UNet2DConditionModel.from_pretrained(args.pretrained_model_name_or_path, subfolder="unet")
image_encoder = CLIPVisionModelWithProjection.from_pretrained(args.image_encoder_path)
# freeze parameters of models to save more memory
unet.requires_grad_(False)
vae.requires_grad_(False)
text_encoder.requires_grad_(False)
image_encoder.requires_grad_(False)
# Projection
image_proj_model = ProjPlusModel(
cross_attention_dim=768,
id_embeddings_dim=512,
clip_embeddings_dim=image_encoder.config.hidden_size,
num_tokens=args.num_tokens,
)
### Facial Encoder
facial_encoder = FacialEncoder(image_CLIPModel_encoder=None)
weight_dtype = torch.float32
if accelerator.mixed_precision == "fp16":
weight_dtype = torch.float16
elif accelerator.mixed_precision == "fp32": ### TODO
weight_dtype = torch.float32
elif accelerator.mixed_precision == "bf16":
weight_dtype = torch.bfloat16
unet.to(accelerator.device, dtype=weight_dtype)
vae.to(accelerator.device, dtype=weight_dtype)
text_encoder.to(accelerator.device, dtype=weight_dtype)
image_encoder.to(accelerator.device, dtype=weight_dtype)
image_proj_model.to(accelerator.device, dtype=weight_dtype)
# init adapter modules
lora_rank = 128
attn_procs = {}
unet_sd = unet.state_dict()
for name in unet.attn_processors.keys():
cross_attention_dim = None if name.endswith("attn1.processor") else unet.config.cross_attention_dim
if name.startswith("mid_block"):
hidden_size = unet.config.block_out_channels[-1]
elif name.startswith("up_blocks"):
block_id = int(name[len("up_blocks.")])
hidden_size = list(reversed(unet.config.block_out_channels))[block_id]
elif name.startswith("down_blocks"):
block_id = int(name[len("down_blocks.")])
hidden_size = unet.config.block_out_channels[block_id]
if cross_attention_dim is None:
attn_procs[name] = Consistent_AttProcessor(hidden_size=hidden_size, cross_attention_dim=cross_attention_dim, rank=lora_rank)
else:
layer_name = name.split(".processor")[0]
weights = {
"to_k_ip.weight": unet_sd[layer_name + ".to_k.weight"],
"to_v_ip.weight": unet_sd[layer_name + ".to_v.weight"],
}
attn_procs[name] = Consistent_IPAttProcessor(hidden_size=hidden_size, cross_attention_dim=cross_attention_dim, rank=lora_rank)
attn_procs[name].load_state_dict(weights, strict=False)
unet.set_attn_processor(attn_procs)
adapter_modules = torch.nn.ModuleList(unet.attn_processors.values())
consistentID_model = ConsistentID(unet, image_proj_model, adapter_modules, facial_encoder)
optimizer_cls = torch.optim.AdamW
unet_params = list([p for p in consistentID_model.unet.parameters() if p.requires_grad])
other_params = list(
[p for n, p in consistentID_model.named_parameters() if p.requires_grad and "unet" not in n]
)
optimizer = optimizer_cls(
[
{"params": unet_params, "lr": 1e-4*1.0 },
{"params": other_params, "lr": 1e-4},
],
betas=(0.9, 0.999),
weight_decay=1e-2,
eps=1e-08,
)
# dataloader
train_dataset = MyDataset(args.data_json_file, args.data_json_mutiID_file, tokenizer=tokenizer, size=args.resolution, \
image_root_path=args.data_root_path, faceid_root_path=args.faceid_root_path, parsing_root_path=args.parsing_root_path)
train_dataloader = torch.utils.data.DataLoader(
train_dataset,
shuffle=True,
collate_fn=collate_fn,
batch_size=args.train_batch_size,
num_workers=args.dataloader_num_workers,
)
consistentID_model, optimizer, train_dataloader = accelerator.prepare(consistentID_model, optimizer, train_dataloader)
for epoch in range(initial_epoch, args.num_train_epochs):
begin = time.perf_counter()
global_step = 0
progress_bar = tqdm(enumerate(train_dataloader), desc=f"Epoch {epoch + 1}/{args.num_train_epochs}", total=len(train_dataloader), disable=not accelerator.is_local_main_process,)
for step, batch in enumerate(train_dataloader):
load_data_time = time.perf_counter() - begin
lora_rank = 128
attn_procs = {}
unet_sd = unet.state_dict()
with accelerator.accumulate(consistentID_model):
with torch.no_grad():
latents = vae.encode(batch["images"].to(accelerator.device, dtype=weight_dtype)).latent_dist.sample()
latents = latents * vae.config.scaling_factor
noise = torch.randn_like(latents)
bsz = latents.shape[0]
timesteps = torch.randint(0, noise_scheduler.num_train_timesteps, (bsz,), device=latents.device)
timesteps = timesteps.long()
noisy_latents = noise_scheduler.add_noise(latents, noise, timesteps)
with torch.no_grad():
clip_images = batch["clip_images"]
image_embeds = image_encoder(clip_images.to(accelerator.device, dtype=weight_dtype), output_hidden_states=True).hidden_states[-2]
hidden_states = []
facial_clip_images = batch["facial_clip_images"]
for facial_clip_image in facial_clip_images:
hidden_state = image_encoder(facial_clip_image.to(accelerator.device, dtype=weight_dtype), output_hidden_states=True).hidden_states[-2]
hidden_states.append(hidden_state)
multi_facial_embeds = torch.stack(hidden_states)
with torch.no_grad():
clean_input_ids = batch["clean_input_ids"]
prompt_embeds = text_encoder(clean_input_ids.to(accelerator.device))[0]
faceid_embeds = batch["face_id_embeds"].to(accelerator.device, dtype=weight_dtype)
facial_token_masks = batch["facial_token_masks"]
valid_facial_token_idx_mask = batch["facial_token_idx_masks"]
parsing_mask_lists = batch["parsing_mask_lists"]
facial_masks = batch["facial_masks"]
facial_token_idxs = batch["facial_token_idxs"]
facial_token_idx_masks = batch["facial_token_idx_masks"]
noise_pred, loss_dict = consistentID_model(noisy_latents, timesteps, prompt_embeds, image_embeds, faceid_embeds, \
multi_facial_embeds, facial_token_masks, valid_facial_token_idx_mask,
noise, parsing_mask_lists, facial_masks, facial_token_idxs, facial_token_idx_masks)
predict_loss = loss_dict["predict_loss"]
facial_loss = loss_dict["facial_loss"]
background_loss = loss_dict["background_loss"]
loss = predict_loss + facial_loss
# Gather the losses across all processes for logging (if we use distributed training).
avg_loss = accelerator.gather(loss.repeat(args.train_batch_size)).mean().item()
# Backpropagate
accelerator.backward(loss)
optimizer.step()
optimizer.zero_grad()
if accelerator.is_main_process:
print("Epoch {}, step {}, data_time: {}, time: {}, step_loss: {}, predict_loss: {}, facial_loss: {}, background_loss: {}".format(
epoch, step, load_data_time, time.perf_counter() - begin, avg_loss, predict_loss, facial_loss, background_loss))
global_step += 1
progress_bar.set_description(f"{exp_name}Epoch {epoch + 1}/{args.num_train_epochs} - Step {step}/{len(train_dataloader)}")
if global_step % args.save_steps == 0:
save_path = os.path.join(args.output_dir, f"{exp_name}_Epoch{epoch+1}-{global_step}")
accelerator.save_state(save_path)
begin = time.perf_counter()
if __name__ == "__main__":
main()