Skip to content

Latest commit

 

History

History
30 lines (21 loc) · 1.12 KB

README.md

File metadata and controls

30 lines (21 loc) · 1.12 KB

Fast R-CNN

Abstract

This paper proposes a Fast Region-based Convolutional Network method (Fast R-CNN) for object detection. Fast R-CNN builds on previous work to efficiently classify object proposals using deep convolutional networks. Compared to previous work, Fast R-CNN employs several innovations to improve training and testing speed while also increasing detection accuracy. Fast R-CNN trains the very deep VGG16 network 9x faster than R-CNN, is 213x faster at test-time, and achieves a higher mAP on PASCAL VOC 2012. Compared to SPPnet, Fast R-CNN trains VGG16 3x faster, tests 10x faster, and is more accurate.

Citation

@inproceedings{girshick2015fast,
  title={Fast r-cnn},
  author={Girshick, Ross},
  booktitle={Proceedings of the IEEE international conference on computer vision},
  year={2015}
}

Results and models