diff --git a/examples/2d_laplace_solver.jl b/examples/2d_laplace_solver.jl index 4dc7619..6e8184b 100644 --- a/examples/2d_laplace_solver.jl +++ b/examples/2d_laplace_solver.jl @@ -1,21 +1,12 @@ using Test using ITensorNumericalAnalysis -using Graphs: SimpleGraph, uniform_tree, binary_tree, random_regular_graph, is_tree -using NamedGraphs: - NamedGraph, - named_grid, - vertices, - named_comb_tree, - rename_vertices, - random_bfs_tree, - undirected_graph +using Graphs: SimpleGraph, uniform_tree +using NamedGraphs: NamedGraph using ITensors: ITensors, Index, siteinds, dim, tags, replaceprime!, MPO, MPS, inner using ITensorNetworks: ITensorNetwork, dmrg, ttn, maxlinkdim using Dictionaries: Dictionary -using SplitApplyCombine: group using Random: seed! -using Distributions: Uniform using UnicodePlots @@ -24,23 +15,34 @@ seed!(1234) L = 14 g = NamedGraph(SimpleGraph(uniform_tree(L))) -vertex_to_dimension_map = Dictionary(vertices(g), [(v[1] % 2) + 1 for v in vertices(g)]) -vertex_to_bit_map = Dictionary(vertices(g), [ceil(Int64, v[1] * 0.5) for v in vertices(g)]) -bit_map = BitMap(vertex_to_bit_map, vertex_to_dimension_map) +bit_map = BitMap(g; map_dimension=2) s = siteinds(g, bit_map) ψ_fxy = 0.1 * rand_itn(s, bit_map; link_space=2) ∇ = laplacian_operator(s, bit_map; scale=false) -∇ = truncate(∇; cutoff=1e-12) -@show maxlinkdim(∇) +∇ = truncate(∇; cutoff=1e-8) +println("2D Laplacian constructed for this tree, bond dimension is $(maxlinkdim(∇))") -dmrg_kwargs = (nsweeps=25, normalize=true, maxdim=20, cutoff=1e-12, outputlevel=1, nsites=2) +init_energy = + inner(ttn(itensornetwork(ψ_fxy))', ∇, ttn(itensornetwork(ψ_fxy))) / + inner(ttn(itensornetwork(ψ_fxy)), ttn(itensornetwork(ψ_fxy))) +println( + "Starting DMRG to find eigensolution of 2D Laplace operator. Initial energy is $init_energy", +) + +dmrg_kwargs = (nsweeps=10, normalize=true, maxdim=15, cutoff=1e-10, outputlevel=1, nsites=2) ϕ_fxy = dmrg(∇, ttn(itensornetwork(ψ_fxy)); dmrg_kwargs...) ϕ_fxy = ITensorNetworkFunction(ITensorNetwork(ϕ_fxy), bit_map) +ϕ_fxy = truncate(ϕ_fxy; cutoff=1e-8) + final_energy = inner(ttn(itensornetwork(ϕ_fxy))', ∇, ttn(itensornetwork(ϕ_fxy))) -#Smallest eigenvalue in this case should be -8 -@show final_energy +println( + "Finished DMRG. Found solution of energy $final_energy with bond dimension $(maxlinkdim(ϕ_fxy))", +) +println( + "Note that in 2D, the discrete laplacian with a step size of 1 has a lowest eigenvalue of -8.", +) n_grid = 100 x_vals, y_vals = grid_points(bit_map, n_grid, 1), grid_points(bit_map, n_grid, 2) @@ -51,4 +53,5 @@ for (i, x) in enumerate(x_vals) end end -show(heatmap(vals)) +println("Here is the heatmap of the 2D function") +show(heatmap(vals; xfact=0.01, yfact=0.01, xoffset=0, yoffset=0, colormap=:inferno)) diff --git a/examples/construct_multi_dimensional_function.jl b/examples/construct_multi_dimensional_function.jl new file mode 100644 index 0000000..55bf7e4 --- /dev/null +++ b/examples/construct_multi_dimensional_function.jl @@ -0,0 +1,32 @@ +using ITensorNumericalAnalysis + +using Graphs: SimpleGraph, uniform_tree +using NamedGraphs: NamedGraph +using ITensors: siteinds +using Random: Random + +L = 12 +Random.seed!(1234) +g = NamedGraph(SimpleGraph(uniform_tree(L))) +bit_map = BitMap(g; map_dimension=3) +s = siteinds(g, bit_map) + +println( + "Constructing the 3D function f(x,y,z) = x³(y + y²) + cosh(πz) as a tensor network on a randomly chosen tree with $L vertices", +) +ψ_fx = poly_itn(s, bit_map, [0.0, 0.0, 0.0, 1.0]; dimension=1) +ψ_fy = poly_itn(s, bit_map, [0.0, 1.0, 1.0, 0.0]; dimension=2) +ψ_fz = cosh_itn(s, bit_map; k=Float64(pi), dimension=3) +ψxyz = ψ_fx * ψ_fy + ψ_fz + +ψxyz = truncate(ψxyz; cutoff=1e-12) +println("Maximum bond dimension of the network is $(maxlinkdim(ψxyz))") + +x, y, z = 0.125, 0.625, 0.5 +fxyz_xyz = calculate_fxyz(ψxyz, [x, y, z]) +println( + "Tensor network evaluates the function as $fxyz_xyz at the co-ordinate: (x,y,z) = ($x, $y, $z)", +) +println( + "Actual value of the function is $(x^3 * (y + y^2) + cosh(pi * z)) at the co-ordinate: (x,y,z) = ($x, $y, $z)", +) diff --git a/src/ITensorNumericalAnalysis.jl b/src/ITensorNumericalAnalysis.jl index ad59261..b639528 100644 --- a/src/ITensorNumericalAnalysis.jl +++ b/src/ITensorNumericalAnalysis.jl @@ -2,6 +2,7 @@ module ITensorNumericalAnalysis include("bitmap.jl") include("utils.jl") +include("polynomialutils.jl") include("itensornetworkfunction.jl") include("elementary_functions.jl") include("elementary_operators.jl") diff --git a/src/bitmap.jl b/src/bitmap.jl index cfedb67..6832cdf 100644 --- a/src/bitmap.jl +++ b/src/bitmap.jl @@ -13,13 +13,21 @@ vertex_digit(bm::BitMap) = bm.vertex_digit vertex_dimension(bm::BitMap) = bm.vertex_dimension base(bm::BitMap) = bm.base -default_bit_map(vertices::Vector) = Dictionary(vertices, [i for i in 1:length(vertices)]) -function default_dimension_map(vertices::Vector) - return Dictionary(vertices, [1 for i in 1:length(vertices)]) +function default_digit_map(vertices::Vector; map_dimension::Int64=1) + return Dictionary( + vertices, [ceil(Int64, i / map_dimension) for (i, v) in enumerate(vertices)] + ) +end +function default_dimension_map(vertices::Vector; map_dimension::Int64) + return Dictionary(vertices, [(i % map_dimension) + 1 for (i, v) in enumerate(vertices)]) end -function BitMap(g; base::Int64=default_base()) - return BitMap(default_bit_map(vertices(g)), default_dimension_map(vertices(g)), base) +function BitMap(g; base::Int64=default_base(), map_dimension::Int64=1) + return BitMap( + default_digit_map(vertices(g); map_dimension), + default_dimension_map(vertices(g); map_dimension), + base, + ) end function BitMap(vertex_digit, vertex_dimension; base::Int64=default_base()) return BitMap(vertex_digit, vertex_dimension, base) diff --git a/src/elementary_functions.jl b/src/elementary_functions.jl index 0fe1011..56e5050 100644 --- a/src/elementary_functions.jl +++ b/src/elementary_functions.jl @@ -146,84 +146,26 @@ function sin_itensornetwork( return ψ1 + ψ2 end -# #FUNCTIONS NEEDED TO IMPLEMENT POLYNOMIALS -# """Exponent on x_i for the tensor Q(x_i) on the tree""" -function f_alpha_beta(α::Vector{Int64}, beta::Int64) - return !isempty(α) ? max(0, beta - 1 - sum(α) + length(α)) : max(0, beta - 1) -end - -# """Coefficient on x_i for the tensor Q(x_i) on the tree""" -function _coeff(N::Int64, α::Vector{Int64}, beta) - @assert length(α) == N - 1 - return if N == 1 - 1 - else - prod([binomial(f_alpha_beta(α[1:(N - 1 - i)], beta), α[N - i] - 1) for i in 1:(N - 1)]) - end -end - -"""Constructor for the tensor that sits on a vertex of degree N""" -function Q_N_tensor( - N::Int64, siteind::Index, αind::Vector{Index}, betaind::Index, xivals::Vector{Float64} -) - @assert length(αind) == N - 1 - @assert length(xivals) == dim(siteind) - n = dim(betaind) - 1 - @assert all(x -> x == n + 1, dim.(αind)) - - link_dims = [n + 1 for i in 1:N] - dims = vcat([dim(siteind)], link_dims) - Q_N_array = zeros(Tuple(dims)) - for (i, xi) in enumerate(xivals) - for j in 0:((n + 1)^(N) - 1) - is = digits(j; base=n + 1, pad=N) + ones(Int64, (N)) - f = f_alpha_beta(is[1:(N - 1)], last(is)) - Q_N_array[(i, Tuple(is)...)...] = _coeff(N, is[1:(N - 1)], last(is)) * (xi^f) - end - end - - return ITensor(Q_N_array, siteind, αind, betaind) -end - -# """Given a tree find the edge coming from the vertex v which is directed towards `root_vertex`""" -function get_edge_toward_root(g::AbstractGraph, v, root_vertex) - @assert is_tree(g) - @assert v != root_vertex - - for vn in neighbors(g, v) - if length(a_star(g, vn, root_vertex)) < length(a_star(g, v, root_vertex)) - return NamedEdge(v => vn) - end - end -end - """Build a representation of the function f(x) = sum_{i=0}^{n}coeffs[i+1]*(x)^{i} on the graph structure specified by indsnetwork""" function polynomial_itensornetwork( s::IndsNetwork, bit_map, coeffs::Vector{Float64}; dimension::Int64=default_dimension() ) - n = length(coeffs) - 1 - + n = length(coeffs) #First treeify the index network (ignore edges that form loops) g = underlying_graph(s) g_tree = undirected_graph(random_bfs_tree(g, first(vertices(g)))) s_tree = add_edges(rem_edges(s, edges(g)), edges(g_tree)) dimension_vertices = vertices(bit_map, dimension) + source_vertex = first(dimension_vertices) + ψ = const_itensornetwork(s_tree, bit_map; linkdim=n) - #Pick a root - - #Need the root vertex to be in the dimension vertices at the moment, should be a way around - root_vertices_dim = filter(v -> v ∈ dimension_vertices, leaf_vertices(s_tree)) - @assert !isempty(root_vertices_dim) - root_vertex = first(root_vertices_dim) - ψ = const_itensornetwork(s_tree, bit_map; linkdim=n + 1) - #Place the Q_n tensors, making sure we get the right index pointing towards the root for v in dimension_vertices siteindex = s_tree[v][] - if v != root_vertex - e = get_edge_toward_root(g_tree, v, root_vertex) - betaindex = first(commoninds(ψ, e)) + if v != source_vertex + e = get_edge_toward_vertex(g_tree, v, source_vertex) + betaindex = only(commoninds(ψ, e)) alphas = setdiff(inds(ψ[v]), Index[siteindex, betaindex]) ψ[v] = Q_N_tensor( length(neighbors(g_tree, v)), @@ -232,20 +174,30 @@ function polynomial_itensornetwork( betaindex, [bit_value_to_scalar(bit_map, v, i) for i in 0:(dim(siteindex) - 1)], ) - elseif v == root_vertex - betaindex = Index(n + 1, "DummyInd") + elseif v == source_vertex + betaindex = Index(n, "DummyInd") alphas = setdiff(inds(ψ[v]), Index[siteindex]) ψv = Q_N_tensor( - 2, + length(neighbors(g_tree, v)) + 1, siteindex, alphas, betaindex, [bit_value_to_scalar(bit_map, v, i) for i in 0:(dim(siteindex) - 1)], ) - ψ[v] = ψv * ITensor(reverse(coeffs), betaindex) + ψ[v] = ψv * ITensor(coeffs, betaindex) end end + #Put the transfer tensors in, these are special tensors that + # go on the digits (sites) that don't correspond to the desired dimension + for v in setdiff(vertices(ψ), dimension_vertices) + siteindex = s_tree[v][] + e = get_edge_toward_vertex(g_tree, v, source_vertex) + betaindex = only(commoninds(ψ, e)) + alphas = setdiff(inds(ψ[v]), Index[siteindex, betaindex]) + ψ[v] = transfer_tensor(siteindex, betaindex, alphas) + end + return ψ end diff --git a/src/itensornetworkfunction.jl b/src/itensornetworkfunction.jl index 229f983..1013422 100644 --- a/src/itensornetworkfunction.jl +++ b/src/itensornetworkfunction.jl @@ -75,3 +75,9 @@ function calculate_fx(fitn::ITensorNetworkFunction, x::Float64) @assert dimension(fitn) == 1 return calculate_fxyz(fitn, [x], [1]) end + +function ITensorNetworks.truncate(fitn::ITensorNetworkFunction; kwargs...) + @assert is_tree(fitn) + ψ = truncate(ttn(itensornetwork(fitn)); kwargs...) + return ITensorNetworkFunction(ITensorNetwork(ψ), bit_map(fitn)) +end diff --git a/src/polynomialutils.jl b/src/polynomialutils.jl new file mode 100644 index 0000000..366b740 --- /dev/null +++ b/src/polynomialutils.jl @@ -0,0 +1,78 @@ +using ITensors: Index, ITensor, dim + +"""Exponent on x_i for the tensor Q(x_i) on the tree""" +function f_alpha_beta(α::Vector{Int64}, beta::Int64) + return !isempty(α) ? max(0, beta - sum(α)) : max(0, beta) +end + +"""Coefficient on x_i for the tensor Q(x_i) on the tree""" +function _coeff(N::Int64, α::Vector{Int64}, beta) + @assert length(α) == N - 1 + return if N == 1 + 1 + else + prod([binomial(f_alpha_beta(α[1:(N - 1 - i)], beta), α[N - i]) for i in 1:(N - 1)]) + end +end + +"""Constructor for the tensor that sits on a vertex of degree N""" +function Q_N_tensor( + N::Int64, siteind::Index, αind::Vector{Index}, betaind::Index, xivals::Vector{Float64} +) + @assert length(αind) == N - 1 + @assert length(xivals) == dim(siteind) + n = dim(betaind) - 1 + @assert all(x -> x == n + 1, dim.(αind)) + + link_dims = [n + 1 for i in 1:N] + dims = vcat([dim(siteind)], link_dims) + Q_N_array = zeros(Tuple(dims)) + for (i, xi) in enumerate(xivals) + for j in 0:((n + 1)^(N) - 1) + is = digits(j; base=n + 1, pad=N) + f = f_alpha_beta(is[1:(N - 1)], last(is)) + Q_N_array[(i, Tuple(is + ones(Int64, (N)))...)...] = + _coeff(N, is[1:(N - 1)], last(is)) * (xi^f) + end + end + + return ITensor(Q_N_array, siteind, αind, betaind) +end + +"""Tensor for transferring the alpha index (beta ind here) of a QN tensor (defined above) across multiple inds (alpha_inds)""" +#Needed for building multi-dimensional polynomials +function transfer_tensor(phys_ind::Index, beta_ind::Index, alpha_inds::Vector) + virt_inds = vcat(beta_ind, alpha_inds) + inds = vcat(phys_ind, virt_inds) + virt_dims = dim.(virt_inds) + @assert allequal(virt_dims) + dims = vcat(dim(phys_ind), virt_dims) + N = length(alpha_inds) + T_array = zeros(Tuple(dims)) + for i in 0:(dim(phys_ind) - 1) + for j in 0:(dim(beta_ind) - 1) + if !isempty(alpha_inds) + for k in 0:((first(virt_dims))^(N) - 1) + is = digits(k; base=first(virt_dims), pad=N) + if sum(is) == j + T_array[(i + 1, j + 1, Tuple(is + ones(Int64, (N)))...)...] = 1.0 + end + end + else + T_array[i + 1, j + 1] = j == 0 ? 1 : 0 + end + end + end + return ITensor(T_array, phys_ind, beta_ind, alpha_inds) +end + +"""Given a tree find the edge coming from the vertex v which is directed towards `source_vertex`""" +function get_edge_toward_vertex(g::AbstractGraph, v, source_vertex) + for vn in neighbors(g, v) + if length(a_star(g, vn, source_vertex)) < length(a_star(g, v, source_vertex)) + return NamedEdge(v => vn) + end + end + + return error("Couldn't find edge. Perhaps graph is not a tree or not connected.") +end diff --git a/test/runtests.jl b/test/runtests.jl index 316ae4f..402fe09 100644 --- a/test/runtests.jl +++ b/test/runtests.jl @@ -8,6 +8,8 @@ using ITensorNumericalAnalysis joinpath(pkgdir(ITensorNumericalAnalysis), "test") ) test_files = filter!(f -> occursin(Glob.FilenameMatch("test_*.jl"), f), files) + files_to_exlude = ["test_examples.jl"] + test_files = setdiff(test_files, files_to_exlude) @testset "Test file $test_file" for test_file in test_files println("Running test file $test_file") @time include(joinpath(root, test_file)) diff --git a/test/test_derivative_operators.jl b/test/test_derivative_operators.jl index de940b3..aa8e73b 100644 --- a/test/test_derivative_operators.jl +++ b/test/test_derivative_operators.jl @@ -67,13 +67,7 @@ end L = 10 g = NamedGraph(SimpleGraph(uniform_tree(L))) - vertex_to_dimension_map = Dictionary( - vertices(g), [(first(v) % 2) + 1 for v in vertices(g)] - ) - vertex_to_bit_map = Dictionary( - vertices(g), [ceil(Int64, first(v) * 0.5) for v in vertices(g)] - ) - bit_map = BitMap(vertex_to_bit_map, vertex_to_dimension_map) + bit_map = BitMap(g; map_dimension=2) s = siteinds(g, bit_map) ψ_fx = cos_itn(s, bit_map; k=0.25 * Float64(pi), dimension=1) @@ -100,16 +94,10 @@ end L = 60 g = named_grid((L, 1)) - vertex_to_dimension_map = Dictionary( - vertices(g), [(first(v) % 3) + 1 for v in vertices(g)] - ) - vertex_to_bit_map = Dictionary( - vertices(g), [ceil(Int64, first(v) / 3) for v in vertices(g)] - ) - bit_map = BitMap(vertex_to_bit_map, vertex_to_dimension_map) + bit_map = BitMap(g; map_dimension=3) s = siteinds(g, bit_map) - ψ_fx = sin_itn(s, bit_map; k=Float64(pi), dimension=1) + ψ_fx = poly_itn(s, bit_map, [0.0, -1.0, 1.0]; dimension=1) ψ_gy = sin_itn(s, bit_map; k=Float64(pi), dimension=2) ψ_hz = sinh_itn(s, bit_map; k=Float64(pi), dimension=3) @assert dimension(ψ_fx) == dimension(ψ_gy) == dimension(ψ_hz) == 3 @@ -127,10 +115,10 @@ end for y in ys for z in zs ψ_fxgyhz_xyz = real(calculate_fxyz(ψ_fxgyhz, [x, y, z])) - @test ψ_fxgyhz_xyz ≈ sin(pi * x) * sin(pi * y) * sinh(pi * z) atol = 1e-3 + @test ψ_fxgyhz_xyz ≈ (x^2 - x) * sin(pi * y) * sinh(pi * z) atol = 1e-3 ∂_∂y_ψ_fxgyhz_xyz = real(calculate_fxyz(∂_∂y_ψ_fxgyhz, [x, y, z])) - @test ∂_∂y_ψ_fxgyhz_xyz ≈ pi * sin(pi * x) * cos(pi * y) * sinh(pi * z) atol = 1e-3 + @test ∂_∂y_ψ_fxgyhz_xyz ≈ pi * (x^2 - x) * cos(pi * y) * sinh(pi * z) atol = 1e-3 end end end diff --git a/test/test_examples.jl b/test/test_examples.jl new file mode 100644 index 0000000..4b2110a --- /dev/null +++ b/test/test_examples.jl @@ -0,0 +1,11 @@ +@eval module $(gensym()) +using ITensorNumericalAnalysis: ITensorNumericalAnalysis +using Test: @testset + +@testset "Test examples" begin + example_files = ["2d_laplace_solver.jl", "construct_multi_dimensional_function.jl"] + @testset "Test $example_file" for example_file in example_files + include(joinpath(pkgdir(ITensorNumericalAnalysis), "examples", example_file)) + end +end +end diff --git a/test/test_itensorfunction.jl b/test/test_itensorfunction.jl index 464a195..15e65b2 100644 --- a/test/test_itensorfunction.jl +++ b/test/test_itensorfunction.jl @@ -132,7 +132,7 @@ end ψ_fx = poly_itn(s, bit_map, coeffs) fx_x = calculate_fx(ψ_fx, x) - fx_exact = sum([coeffs[i] * (x^(deg + 1 - i)) for i in 1:(deg + 1)]) + fx_exact = sum([coeffs[i] * (x^(i - 1)) for i in 1:(deg + 1)]) @test fx_x ≈ fx_exact atol = 1e-4 end end @@ -142,10 +142,7 @@ end #Constant function but represented in three dimension @testset "test const" begin g = named_grid((3, 3)) - - vertex_to_dimension_map = Dictionary(vertices(g), [v[1] for v in vertices(g)]) - vertex_to_bit_map = Dictionary(vertices(g), [v[2] for v in vertices(g)]) - bit_map = BitMap(vertex_to_bit_map, vertex_to_dimension_map) + bit_map = BitMap(g; map_dimension=2) s = siteinds(g, bit_map) c = 1.5 @@ -169,11 +166,7 @@ end ] L = 10 g = named_grid((L, 1)) - vertex_to_dimension_map = Dictionary(vertices(g), [(v[1] % 2) + 1 for v in vertices(g)]) - vertex_to_bit_map = Dictionary( - vertices(g), [ceil(Int64, v[1] * 0.5) for v in vertices(g)] - ) - bit_map = BitMap(vertex_to_bit_map, vertex_to_dimension_map) + bit_map = BitMap(g; map_dimension=2) x, y = 0.625, 0.25 for (name, net_func, func) in funcs @@ -198,9 +191,7 @@ end a = 1.3 k = 0.15 nterms = 10 - vertex_to_dimension_map = Dictionary(vertices(g), [v[2] for v in vertices(g)]) - vertex_to_bit_map = Dictionary(vertices(g), [v[1] for v in vertices(g)]) - bit_map = BitMap(vertex_to_bit_map, vertex_to_dimension_map) + bit_map = BitMap(g; map_dimension=2) s = siteinds(g, bit_map) x, y = 0.625, 0.875