Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

CUTEst input model #95

Open
tmigot opened this issue May 26, 2023 · 1 comment
Open

CUTEst input model #95

tmigot opened this issue May 26, 2023 · 1 comment
Labels
documentation Improvements or additions to documentation good first issue Good for newcomers

Comments

@tmigot
Copy link
Member

tmigot commented May 26, 2023

No description provided.

@tmigot tmigot added enhancement New feature or request good first issue Good for newcomers labels May 26, 2023
@tmigot
Copy link
Member Author

tmigot commented Jul 20, 2023

The following works:

julia> using CUTEst, JSOSuite
[ Info: Precompiling CUTEst [1b53aba6-35b6-5f92-a507-53c67d53f819]
[ Info: call set_mastsif() to use the full SIF collection
┌ Info: using problem repository
└   ENV["MASTSIF"] = ".julia/artifacts/a7ea0d0aaf29a39ca0fe75588fc077cdd5b5ed54/optrove-sif-99c5b38e7d03"

julia> nlp = CUTEstModel("ARGLINA")
  Problem name: ARGLINA
   All variables: ████████████████████ 200    All constraints: ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ 0     
            free: ████████████████████ 200               free: ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ 0     
           lower: ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ 0                lower: ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ 0     
           upper: ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ 0                upper: ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ 0     
         low/upp: ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ 0              low/upp: ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ 0     
           fixed: ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ 0                fixed: ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ 0     
          infeas: ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ 0               infeas: ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ 0     
            nnzh: (  0.00% sparsity)   20100           linear: ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ 0     
                                                    nonlinear: ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ 0     
                                                         nnzj: (------% sparsity)         



julia> JSOSuite.select_solvers(nlp)
The problem ARGLINA has 200 variables and no constraints.
Algorithm selection:
- unconstrained: ✓;
- nonlinear objective: ✓;
- may use 2-th order derivative.
There are 9 solvers available:
["KNITRO", "LBFGS", "R2", "TRON", "TRUNK", "IPOPT", "DCISolver", "FletcherPenaltySolver", "Percival"].
9×14 DataFrame
 Row │ name                   name_solver     name_pkg                  solve_function  is_available  bounds  equalities  inequalities  specialized_nls  can_s ⋯
     │ String                 Symbol          String                    Symbol          Bool          Bool    Bool        Bool          Bool             Bool  ⋯
─────┼──────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────
   1 │ KNITRO                 KnitroSolver    NLPModelsKnitro.jl        knitro                  true    true        true          true             true        ⋯
   2 │ LBFGS                  LBFGSSolver     JSOSolvers.jl             lbfgs                   true   false       false         false            false
   3 │ R2                     R2Solver        JSOSolvers.jl             R2                      true   false       false         false            false
   4 │ TRON                   TronSolver      JSOSolvers.jl             tron                    true    true       false         false            false
   5 │ TRUNK                  TrunkSolver     JSOSolvers.jl             trunk                   true   false       false         false            false        ⋯
   6 │ IPOPT                  IpoptSolver     NLPModelsIpopt.jl         ipopt                   true    true        true          true            false
   7 │ DCISolver              DCIWorkspace    DCISolver.jl              dci                     true   false        true         false            false
   8 │ FletcherPenaltySolver  FPSSSolver      FletcherPenaltySolver.jl  fps_solve               true   false        true         false            false
   9 │ Percival               PercivalSolver  Percival.jl               percival                true    true        true          true            false        ⋯
                                                                                                                                               5 columns omitted

julia> JSOSuite.solve("LBFGS", nlp)
"Execution stats: first-order stationary"

so this is just a documentation issue.

@tmigot tmigot added documentation Improvements or additions to documentation and removed enhancement New feature or request labels Jul 20, 2023
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
documentation Improvements or additions to documentation good first issue Good for newcomers
Projects
None yet
Development

No branches or pull requests

1 participant