-
Notifications
You must be signed in to change notification settings - Fork 23
/
simple_demo.py
162 lines (130 loc) · 4.68 KB
/
simple_demo.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
#!/usr/bin/env python
# -*- coding: utf-8 -*-
import csv
import time
import copy
import argparse
import cv2 as cv
from model.yolox.yolox_onnx import YoloxONNX
def get_args():
parser = argparse.ArgumentParser()
parser.add_argument("--device", type=int, default=0)
parser.add_argument("--file", type=str, default=None)
parser.add_argument("--fps", type=int, default=30)
parser.add_argument("--width", help='cap width', type=int, default=960)
parser.add_argument("--height", help='cap height', type=int, default=540)
parser.add_argument("--skip_frame", type=int, default=0)
parser.add_argument(
"--model",
type=str,
default='model/yolox/yolox_nano.onnx',
)
parser.add_argument(
'--input_shape',
type=str,
default="416,416",
help="Specify an input shape for inference.",
)
parser.add_argument(
'--score_th',
type=float,
default=0.7,
help='Class confidence',
)
parser.add_argument(
'--nms_th',
type=float,
default=0.45,
help='NMS IoU threshold',
)
parser.add_argument(
'--nms_score_th',
type=float,
default=0.1,
help='NMS Score threshold',
)
parser.add_argument(
"--with_p6",
action="store_true",
help="Whether your model uses p6 in FPN/PAN.",
)
args = parser.parse_args()
return args
def main():
# 引数解析 #################################################################
args = get_args()
cap_device = args.device
cap_width = args.width
cap_height = args.height
fps = args.fps
skip_frame = args.skip_frame
model_path = args.model
input_shape = tuple(map(int, args.input_shape.split(',')))
score_th = args.score_th
nms_th = args.nms_th
nms_score_th = args.nms_score_th
with_p6 = args.with_p6
if args.file is not None:
cap_device = args.file
frame_count = 0
# カメラ準備 ###############################################################
cap = cv.VideoCapture(cap_device)
cap.set(cv.CAP_PROP_FRAME_WIDTH, cap_width)
cap.set(cv.CAP_PROP_FRAME_HEIGHT, cap_height)
# モデルロード #############################################################
yolox = YoloxONNX(
model_path=model_path,
input_shape=input_shape,
class_score_th=score_th,
nms_th=nms_th,
nms_score_th=nms_score_th,
with_p6=with_p6,
# providers=['CPUExecutionProvider'],
)
# ラベル読み込み ###########################################################
with open('setting/labels.csv', encoding='utf8') as f:
labels = csv.reader(f)
labels = [row for row in labels]
while True:
start_time = time.time()
# カメラキャプチャ #####################################################
ret, frame = cap.read()
if not ret:
continue
debug_image = copy.deepcopy(frame)
frame_count += 1
if (frame_count % (skip_frame + 1)) != 0:
continue
# 検出実施 #############################################################
bboxes, scores, class_ids = yolox.inference(frame)
for bbox, score, class_id in zip(bboxes, scores, class_ids):
class_id = int(class_id) + 1
if score < score_th:
continue
# 検出結果可視化 ###################################################
x1, y1 = int(bbox[0]), int(bbox[1])
x2, y2 = int(bbox[2]), int(bbox[3])
cv.putText(
debug_image, 'ID:' + str(class_id) + ' ' +
labels[class_id][0] + ' ' + '{:.3f}'.format(score),
(x1, y1 - 15), cv.FONT_HERSHEY_SIMPLEX, 0.6, (0, 255, 0), 2,
cv.LINE_AA)
cv.rectangle(debug_image, (x1, y1), (x2, y2), (0, 255, 0), 2)
# キー処理(ESC:終了) #################################################
key = cv.waitKey(1)
if key == 27: # ESC
break
# FPS調整 #############################################################
elapsed_time = time.time() - start_time
sleep_time = max(0, ((1.0 / fps) - elapsed_time))
time.sleep(sleep_time)
cv.putText(
debug_image,
"Elapsed Time:" + '{:.1f}'.format(elapsed_time * 1000) + "ms",
(10, 30), cv.FONT_HERSHEY_SIMPLEX, 0.8, (0, 255, 0), 2, cv.LINE_AA)
# 画面反映 #############################################################
cv.imshow('NARUTO HandSignDetection Simple Demo', debug_image)
cap.release()
cv.destroyAllWindows()
if __name__ == '__main__':
main()