-
Notifications
You must be signed in to change notification settings - Fork 5
/
muon.py
184 lines (159 loc) · 7.86 KB
/
muon.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
import os
import torch
import torch.distributed as dist
@torch.compile
def zeropower_via_newtonschulz5(G, steps):
"""
Newton-Schulz iteration to compute the zeroth power / orthogonalization of G. We opt to use a
quintic iteration whose coefficients are selected to maximize the slope at zero. For the purpose
of minimizing steps, it turns out to be empirically effective to keep increasing the slope at
zero even beyond the point where the iteration no longer converges all the way to one everywhere
on the interval. This iteration therefore does not produce UV^T but rather something like US'V^T
where S' is diagonal with S_{ii}' ~ Uniform(0.5, 1.5), which turns out not to hurt model
performance at all relative to UV^T, where USV^T = G is the SVD.
"""
assert len(G.shape) == 2
a, b, c = (3.4445, -4.7750, 2.0315)
X = G.bfloat16()
if G.size(0) > G.size(1):
X = X.T
# Ensure spectral norm is at most 1
X = X / (X.norm() + 1e-7)
# Perform the NS iterations
for _ in range(steps):
A = X @ X.T
B = b * A + c * A @ A # adapted from suggestion by @jxbz, @leloykun, and @YouJiacheng
X = a * X + B @ X
if G.size(0) > G.size(1):
X = X.T
return X
class Muon(torch.optim.Optimizer):
"""
Muon - MomentUm Orthogonalized by Newton-schulz
Muon internally runs standard SGD-momentum, and then performs an orthogonalization post-
processing step, in which each 2D parameter's update is replaced with the nearest orthogonal
matrix. To efficiently orthogonalize each update, we use a Newton-Schulz iteration, which has
the advantage that it can be stably run in bfloat16 on the GPU.
Some warnings:
- We believe this optimizer is unlikely to work well for training with small batch size.
- We believe it may not work well for finetuning pretrained models, but we haven't tested this.
Arguments:
muon_params: The parameters to be optimized by Muon.
lr: The learning rate. The updates will have spectral norm of `lr`. (0.02 is a good default)
momentum: The momentum used by the internal SGD. (0.95 is a good default)
nesterov: Whether to use Nesterov-style momentum in the internal SGD. (recommended)
ns_steps: The number of Newton-Schulz iterations to run. (6 is probably always enough)
adamw_params: The parameters to be optimized by AdamW. Any parameters in `muon_params` which are
{0, 1}-D or are detected as being the embed or lm_head will be optimized by AdamW as well.
adamw_lr: The learning rate for the internal AdamW.
adamw_betas: The betas for the internal AdamW.
adamw_eps: The epsilon for the internal AdamW.
adamw_wd: The weight decay for the internal AdamW.
"""
def __init__(self, muon_params, lr=0.02, momentum=0.95, nesterov=True, ns_steps=6,
adamw_params=None, adamw_lr=3e-4, adamw_betas=(0.95, 0.95), adamw_eps=1e-8, adamw_wd=0):
defaults = dict(lr=lr, momentum=momentum, nesterov=nesterov, ns_steps=ns_steps,
adamw_lr_ratio=adamw_lr/lr, adamw_betas=adamw_betas,
adamw_eps=adamw_eps, adamw_wd=adamw_wd)
params = list(muon_params)
adamw_params = list(adamw_params) if adamw_params is not None else []
params.extend(adamw_params)
super().__init__(params, defaults)
# Sort parameters into those for which we will use Muon, and those for which we will not
for p in muon_params:
# Use Muon for every parameter in muon_params which is >= 2D and doesn't look like an embedding or head layer
if p.ndim >= 2 and p.size(0) < 10000:
self.state[p]['use_muon'] = True
else:
self.state[p]['use_muon'] = False
for p in adamw_params:
# Do not use Muon for parameters in adamw_params
self.state[p]['use_muon'] = False
if 'WORLD_SIZE' in os.environ:
self.world_size = int(os.environ['WORLD_SIZE'])
self.rank = int(os.environ['RANK'])
else:
self.world_size = 1
self.rank = 0
def step(self, closure=None):
"""Perform a single optimization step.
Args:
closure (Callable, optional): A closure that reevaluates the model
and returns the loss.
"""
loss = None
if closure is not None:
with torch.enable_grad():
loss = closure()
for group in self.param_groups:
############################
# Muon #
############################
params = [p for p in group['params'] if self.state[p]['use_muon']]
lr = group['lr']
momentum = group['momentum']
# generate weight updates in distributed fashion
total_params = sum(p.numel() for p in params)
updates_flat = torch.zeros(total_params, device='cuda', dtype=torch.bfloat16)
curr_idx = 0
for i, p in enumerate(params):
# luckily this will perfectly distribute a transformer with multiple of 4 layers to 8 GPUs
if i % self.world_size == self.rank:
g = p.grad
if g is None:
continue
if g.ndim > 2:
g = g.view(g.size(0), -1)
assert g is not None
state = self.state[p]
if 'momentum_buffer' not in state:
state['momentum_buffer'] = torch.zeros_like(g)
buf = state['momentum_buffer']
buf.mul_(momentum).add_(g)
if group['nesterov']:
g = g.add(buf, alpha=momentum)
else:
g = buf
g = zeropower_via_newtonschulz5(g, steps=group['ns_steps'])
g *= max(1, g.size(0)/g.size(1))**0.5
updates_flat[curr_idx:curr_idx+p.numel()] = g.flatten()
curr_idx += p.numel()
# sync updates across devices. we are not memory-constrained so can do this simple deserialization
if self.world_size > 1:
dist.all_reduce(updates_flat, op=dist.ReduceOp.SUM)
# deserialize and apply updates
curr_idx = 0
for p in params:
g = updates_flat[curr_idx:curr_idx+p.numel()].view_as(p.data).type_as(p.data)
p.data.add_(g, alpha=-lr)
curr_idx += p.numel()
############################
# AdamW backup #
############################
params = [p for p in group['params'] if not self.state[p]['use_muon']]
lr = group['adamw_lr_ratio'] * group['lr'] # in order for lr schedule to work
beta1, beta2 = group['adamw_betas']
eps = group['adamw_eps']
weight_decay = group['adamw_wd']
for p in params:
g = p.grad
if g is None:
continue
state = self.state[p]
if 'step' not in state:
state['step'] = 0
state['moment1'] = torch.zeros_like(g)
state['moment2'] = torch.zeros_like(g)
state['step'] += 1
step = state['step']
buf1 = state['moment1']
buf2 = state['moment2']
buf1.lerp_(g, 1-beta1)
buf2.lerp_(g.square(), 1-beta2)
g = buf1 / (eps + buf2.sqrt())
bias_correction1 = 1 - beta1**step
bias_correction2 = 1 - beta2**step
scale = bias_correction1 / bias_correction2**0.5
p.data.mul_(1 - lr * weight_decay)
p.data.add_(g, alpha=-lr/scale)
return loss