-
Notifications
You must be signed in to change notification settings - Fork 35
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Have the README refer to the website for now
- Loading branch information
Showing
1 changed file
with
2 additions
and
2 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -1,6 +1,6 @@ | ||
# PyKE | ||
***A suite of Python/PyRAF tools to analyze Kepler data.*** | ||
|
||
# Description | ||
For more information and documentation, | ||
visit http://keplerscience.arc.nasa.gov/software.html#pyke | ||
|
||
The Kepler archive contains time-series data that have been calibrated and reduced from detector pixels. This pipelined reduction includes the removal of time-series trends systematic to the spacecraft and its environment rather than the targets. For every target there is a level of subjectivity required to reduce systematics. Differing scientific goals are likely to have differing requirements for systematic mitigation. Systematic reduction in the Kepler pipeline is optimized to yield the highest number of potentially-detectable exoplanet transits from a sample of 200,000 stars. PyKE, on the other hand, is a group of python tasks developed for the reduction and analysis of Kepler pixel-level data and Simple Aperture Photometry (SAP) data of individual targets with individual characteristics. PyKE was developed to provide alternative data reduction, tunable to the user's specific science goals. The main purposes of these tasks are to i) re-extract light curves from manually-chosen pixel apertures and ii) cotrend and/or detrend the data in order to reduce or remove systematic noise structure using methods tun-able to user and target-specific requirements. Tasks to perform data analysis developed for the author's science programs are also included. PyKE is an open source project. Contributions of new tasks or enhanced functionality of existing tasks by the community are welcome. |