Skip to content

Latest commit

 

History

History
 
 

CvT: Introducing Convolutions to Vision Transformers, arxiv

PaddlePaddle training/validation code and pretrained models for CvT.

The official pytorch implementation is here.

This implementation is developed by PaddleViT.

drawing

CvT Model Overview

Update

  • Update (2022-04-08): Code is updated.
  • Update (2021-12-24): Code is released and ported weights are uploaded.

Models Zoo

Model Acc@1 Acc@5 #Params FLOPs Image Size Crop_pct Interpolation Link
CvT-13-224 81.59 95.67 20M 4.5G 224 0.875 bicubic google/baidu
CvT-21-224 82.46 96.00 32M 7.1G 224 0.875 bicubic google/baidu
CvT-13-384 83.00 96.36 20M 16.3G 384 1.0 bicubic google/baidu
CvT-21-384 83.27 96.16 32M 24.9G 384 1.0 bicubic google/baidu
CvT-13-384-22k 83.26 97.09 20M 16.3G 384 1.0 bicubic google/baidu
CvT-21-384-22k 84.91 97.62 32M 24.9G 384 1.0 bicubic google/baidu
CvT-w24-384-22k 87.58 98.47 277M 193.2G 384 1.0 bicubic google/baidu

*The results are evaluated on ImageNet2012 validation set.

Data Preparation

ImageNet2012 dataset is used in the following file structure:

│imagenet/
├──train_list.txt
├──val_list.txt
├──train/
│  ├── n01440764
│  │   ├── n01440764_10026.JPEG
│  │   ├── n01440764_10027.JPEG
│  │   ├── ......
│  ├── ......
├──val/
│  ├── n01440764
│  │   ├── ILSVRC2012_val_00000293.JPEG
│  │   ├── ILSVRC2012_val_00002138.JPEG
│  │   ├── ......
│  ├── ......
  • train_list.txt: list of relative paths and labels of training images. You can download it from: google/baidu
  • val_list.txt: list of relative paths and labels of validation images. You can download it from: google/baidu

Usage

To use the model with pretrained weights, download the .pdparam weight file and change related file paths in the following python scripts. The model config files are located in ./configs/.

For example, assume weight file is downloaded in ./cvt-13-224x224.pdparams, to use the cvt-13-224x224 model in python:

from config import get_config
from cvt import build_cvt as build_model
# config files in ./configs/
config = get_config('./configs/cvt-13-224x224.yaml')
# build model
model = build_model(config)
# load pretrained weights
model_state_dict = paddle.load('./cvt-13-224x224.pdparams')
model.set_state_dict(model_state_dict)

Evaluation

To evaluate model performance on ImageNet2012, run the following script using command line:

sh run_eval_multi.sh

or

CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7 \
python main_multi_gpu.py \
-cfg='./configs/cvt-13-224x224.yaml' \
-dataset='imagenet2012' \
-batch_size=256 \
-data_path='/dataset/imagenet' \
-eval \
-pretrained='./cvt-13-224x224.pdparams' \
-amp

Note: if you have only 1 GPU, change device number to CUDA_VISIBLE_DEVICES=0 would run the evaluation on single GPU.

Training

To train the model on ImageNet2012, run the following script using command line:

sh run_train_multi.sh

or

CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7 \
python main_multi_gpu.py \
-cfg='./configs/cvt-13-224x224.yaml' \
-dataset='imagenet2012' \
-batch_size=256 \
-data_path='/dataset/imagenet' \
-amp

Note: it is highly recommanded to run the training using multiple GPUs / multi-node GPUs.

Reference

@article{wu2021cvt,
title={CvT: Introducing Convolutions to Vision Transformers},
author={Haiping Wu, Bin Xiao, Noel Codella, Mengchen Liu, Xiyang Dai, Lu Yuan, Lei Zhang},
journal={arXiv preprint arXiv:2103.15808},
year={2021}
}