-
Notifications
You must be signed in to change notification settings - Fork 0
/
lysinebiblio.bib
804 lines (764 loc) · 30 KB
/
lysinebiblio.bib
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
@article{rochelle-2009-amine-scrub,
author = {Rochelle, Gary T.},
title = {Amine Scrubbing for {CO}$_{2}$ Capture},
journal = {Science},
volume = 325,
number = 5948,
pages = {1652-1654},
year = 2009,
doi = {10.1126/science.1176731},
url =
{http://www.sciencemag.org/content/325/5948/1652.abstract},
abstract = {Amine scrubbing has been used to separate carbon
dioxide (CO2) from natural gas and hydrogen since
1930. It is a robust technology and is ready to be
tested and used on a larger scale for CO2 capture
from coal-fired power plants. The minimum work
requirement to separate CO2 from coal-fired flue gas
and compress CO2 to 150 bar is 0.11 megawatt-hours
per metric ton of CO2. Process and solvent
improvements should reduce the energy consumption to
0.2 megawatt-hour per ton of CO2. Other advanced
technologies will not provide energy-efficient or
timely solutions to CO2 emission from conventional
coal-fired power plants.},
eprint =
{http://www.sciencemag.org/content/325/5948/1652.full.pdf},
}
@TechReport{2003-ethan,
author = {},
title = {Ethanolamines},
institution = {DOW Chemical Company},
year = {2003},
OPTkey = {},
OPTtype = {},
OPTnumber = {},
OPTaddress = {},
OPTmonth = {January},
OPTnote = {},
OPTannote = {}
}
@article{reynolds-2012-towar-commer,
author = {Reynolds, Alicia J. and Verheyen, T. Vincent and
Adeloju, Samuel B. and Meuleman, Erik and Feron,
Paul},
title = {Towards Commercial Scale Postcombustion Capture of
{CO}$_{2}$ with Monoethanolamine Solvent: Key
Considerations for Solvent Management and
Environmental Impacts},
journal = {Environmental Science \& Technology},
volume = 46,
number = 7,
pages = {3643-3654},
year = 2012,
doi = {10.1021/es204051s},
url = { http://dx.doi.org/10.1021/es204051s },
note = {PMID: 22324566},
eprint = { http://dx.doi.org/10.1021/es204051s },
}
@article{uyanga-2007-studies-so2,
author = {Uyanga, Itoro J. and Idem, Raphael O.},
title = {Studies of {SO}$_{2}$- and {O}$_{2}$-Induced Degradation of
Aqueous {MEA} during {CO}$_{2}$ Capture from Power Plant Flue
Gas Streams},
journal = {Industrial \& Engineering Chemistry Research},
volume = 46,
number = 8,
pages = {2558-2566},
year = 2007,
doi = {10.1021/ie0614024},
url = { http://dx.doi.org/10.1021/ie0614024 },
eprint = { http://dx.doi.org/10.1021/ie0614024 },
}
@article{voice-2011-oxidat-co2,
author = "Alexander K. Voice and Gary T. Rochelle",
title = "Oxidation of amines at absorber conditions for
{CO}$_{2}$ capture from flue gas ",
journal = "Energy Procedia ",
volume = 4,
number = 0,
pages = "171 - 178",
year = 2011,
doi = {10.1016/j.egypro.2011.01.038},
url =
"http://www.sciencedirect.com/science/article/pii/S1876610211000397",
note = "10th International Conference on Greenhouse Gas
Control Technologies ",
issn = "1876-6102",
keywords = "Oxidative degradation",
keywords = "Oxidative degradation",
keywords = "Oxidative degradation",
keywords = "Oxidative degradation",
}
@article{rochelle-2011-aqueous-co2,
author = "Gary Rochelle and Eric Chen and Stephanie Freeman
and David Van Wagener and Qing Xu and Alexander
Voice",
title = "Aqueous piperazine as the new standard for {CO}$_{2}$
capture technology ",
journal = "Chemical Engineering Journal ",
volume = 171,
number = 3,
pages = "725 - 733",
year = 2011,
doi = {10.1016/j.cej.2011.02.011},
url =
"http://www.sciencedirect.com/science/article/pii/S1385894711001793",
note = "Special Section: Symposium on Post-Combustion Carbon
Dioxide Capture ",
issn = "1385-8947",
keywords = "Carbon dioxide",
keywords = "Carbon dioxide",
keywords = "Carbon dioxide",
keywords = "Carbon dioxide",
keywords = "Carbon dioxide",
keywords = "Carbon dioxide",
keywords = "Carbon dioxide",
}
@article{knuutila-2009-kinet-co2,
author = "Hanna Knuutila and Hallvard F. Svendsen and Olav
Juliussen",
title = "Kinetics of carbonate based {CO}$_{2}$ capture systems
",
journal = "Energy Procedia ",
volume = 1,
number = 1,
pages = "1011 - 1018",
year = 2009,
doi = {10.1016/j.egypro.2009.01.134},
url =
"http://www.sciencedirect.com/science/article/pii/S1876610209001350",
note = "Greenhouse Gas Control Technologies 9 Proceedings of
the 9th International Conference on Greenhouse Gas
Control Technologies (GHGT-9), 16-20 November 2008,
Washington DC, {USA} ",
issn = "1876-6102",
keywords = "Potassium carbonate",
keywords = "Potassium carbonate",
keywords = "Potassium carbonate",
keywords = "Potassium carbonate",
}
@article{cullinane-2004-carbon,
author = "J.Tim Cullinane and Gary T. Rochelle",
title = "Carbon dioxide absorption with aqueous potassium
carbonate promoted by piperazine ",
journal = "Chemical Engineering Science ",
volume = 59,
number = 17,
pages = "3619 - 3630",
year = 2004,
doi = {10.1016/j.ces.2004.03.029},
url =
"http://www.sciencedirect.com/science/article/pii/S0009250904002696",
issn = "0009-2509",
keywords = "Absorption",
keywords = "Absorption",
keywords = "Absorption",
keywords = "Absorption",
keywords = "Absorption",
keywords = "Absorption",
}
@article{ghosh-2009-absor,
author = "Ujjal K. Ghosh and Sandra E. Kentish and Geoff
W. Stevens",
title = "Absorption of carbon dioxide into aqueous potassium
carbonate promoted by boric acid ",
journal = "Energy Procedia ",
volume = 1,
number = 1,
pages = "1075 - 1081",
year = 2009,
doi = {10.1016/j.egypro.2009.01.142},
url =
"http://www.sciencedirect.com/science/article/pii/S187661020900143X",
note = "Greenhouse Gas Control Technologies 9 Proceedings of
the 9th International Conference on Greenhouse Gas
Control Technologies (GHGT-9), 16-20 November 2008,
Washington DC, \{USA\} ",
issn = "1876-6102",
keywords = "\{CO2\} absorption",
keywords = "\{CO2\} absorption",
keywords = "\{CO2\} absorption",
keywords = "\{CO2\} absorption",
}
@article{sistla-2014-carbon,
author = "Yamini Sudha Sistla and Ashok Khanna",
title = "Carbon dioxide absorption studies using
amine-functionalized ionic liquids ",
journal = "Journal of Industrial and Engineering Chemistry ",
volume = 20,
number = 4,
pages = "2497 - 2509",
year = 2014,
doi = {10.1016/j.jiec.2013.10.032},
url =
"http://www.sciencedirect.com/science/article/pii/S1226086X13005121",
issn = "1226-086X",
keywords = "Absorption",
keywords = "Absorption",
keywords = "Absorption",
keywords = "Absorption",
keywords = "Absorption",
}
@article{holst-2009-kinet,
author = "J. van Holst and G.F. Versteeg and D.W.F. Brilman
and J.A. Hogendoorn",
title = "Kinetic study of with various amino acid salts in
aqueous solution ",
journal = "Chemical Engineering Science ",
volume = 64,
number = 1,
pages = "59 - 68",
year = 2009,
doi = {10.1016/j.ces.2008.09.015},
url =
"http://www.sciencedirect.com/science/article/pii/S0009250908004983",
issn = "0009-2509",
keywords = "Carbon dioxide",
keywords = "Carbon dioxide",
keywords = "Carbon dioxide",
keywords = "Carbon dioxide",
keywords = "Carbon dioxide",
keywords = "Carbon dioxide",
}
@article{jockenhoevel-2009-devel-econom,
author = "Tobias Jockenhoevel and Ruediger Schneider and
Helmut Rode",
title = "Development of an Economic Post-Combustion Carbon
Capture Process ",
journal = "Energy Procedia ",
volume = 1,
number = 1,
pages = "1043 - 1050",
year = 2009,
doi = {10.1016/j.egypro.2009.01.138},
url =
"http://www.sciencedirect.com/science/article/pii/S1876610209001398",
note = "Greenhouse Gas Control Technologies 9 Proceedings of
the 9th International Conference on Greenhouse Gas
Control Technologies (GHGT-9), 16-20 November 2008,
Washington DC, \{USA\} ",
issn = "1876-6102",
keywords = "\{CO2\}",
keywords = "\{CO2\}",
keywords = "\{CO2\}",
keywords = "\{CO2\}",
keywords = "\{CO2\}",
keywords = "\{CO2\}",
keywords = "\{CO2\}",
}
@article{sanchez-2013-concep-desig,
author = {Sanchez Fernandez, Eva and Heffernan, Katarzyna and
van der Ham, Leen V. and Linders, Marco J. G. and
Eggink, Emma and Schrama, Frank N. H. and Brilman,
D. W. F. and Goetheer, Earl L. V. and Vlugt, Thijs
J. H.},
title = {Conceptual Design of a Novel \ce{CO2} Capture Process
Based on Precipitating Amino Acid Solvents},
journal = {Industrial \& Engineering Chemistry Research},
volume = 52,
number = 34,
pages = {12223-12235},
year = 2013,
doi = {10.1021/ie401228r},
url = { http://dx.doi.org/10.1021/ie401228r },
eprint = { http://dx.doi.org/10.1021/ie401228r },
}
@article{lim-2012-absor-co2,
author = {Lim, Jin-ah and Kim, Dong Hyun and Yoon, Yeoil and
Jeong, Soon Kwan and Park, Ki Tae and Nam, Sung
Chan},
title = {Absorption of {CO}$_{2}$ into Aqueous Potassium Salt
Solutions of l-Alanine and l-Proline},
journal = {Energy \& Fuels},
volume = 26,
number = 6,
pages = {3910-3918},
year = 2012,
doi = {10.1021/ef300453e},
url = { http://dx.doi.org/10.1021/ef300453e },
eprint = { http://dx.doi.org/10.1021/ef300453e },
}
@article{hook-1997-inves-some,
author = {Hook, Robert J.},
title = {An Investigation of Some Sterically Hindered Amines
as Potential Carbon Dioxide Scrubbing Compounds},
journal = {Industrial and Engineering Chemistry Research},
volume = 36,
number = 5,
pages = {1779-1790},
year = 1997,
doi = {10.1021/ie9605589},
url = { http://dx.doi.org/10.1021/ie9605589 },
eprint = { http://dx.doi.org/10.1021/ie9605589 },
}
@article{portugal-2007-charac,
author = "A.F. Portugal and P.W.J. Derks and G.F. Versteeg and
F.D. Magalh$\tilde{a}$es and A. Mendes",
title = "Characterization of potassium glycinate for carbon
dioxide absorption purposes ",
journal = "Chemical Engineering Science ",
volume = 62,
number = 23,
pages = "6534 - 6547",
year = 2007,
doi = {10.1016/j.ces.2007.07.068},
url =
"http://www.sciencedirect.com/science/article/pii/S0009250907006057",
issn = "0009-2509",
keywords = "Carbon dioxide",
keywords = "Carbon dioxide",
keywords = "Carbon dioxide",
keywords = "Carbon dioxide",
keywords = "Carbon dioxide",
keywords = "Carbon dioxide",
abstract = "Aqueous solutions of potassium glycinate were
characterized for carbon dioxide absorption
purposes. Density and viscosity of these solutions,
with concentrations ranging from 0.1 to 3 M,
were determined at temperatures from 293 to
313 K. Diffusivity of \{CO\} 2 in solution was
estimated applying the modified Stokes-Einstein
relation. Solubilities of N 2 O at the same
temperatures and concentrations were measured and
the ion specific parameter based on Schumpe's model
was determined for the glycinate anion; the
solubilities of \{CO\} 2 in these solutions were
then computed. The reaction kinetics of \{CO\} 2 in
the aqueous solution of potassium glycinate was
determined at 293, 298 and 303 K using a
stirred cell reactor. The results were interpreted
using the DeCoursey equation for the calculation of
the enhancement factor. The rate of absorption as a
function of the temperature and solution
concentration for the conditions studied was found
to be given by the following expression: - r \{CO\}
2 = 2.42 x 10 16 exp - 8544 T exp ( 0.44 C S ) C S C
\{CO\} 2 . ",
}
@article{kumar-2003-kinet-co2,
author = {Kumar, P. S. and Hogendoorn, J. A. and Versteeg,
G. F. and Feron, P. H. M.},
title = {Kinetics of the reaction of {CO}$_{2}$ with aqueous
potassium salt of taurine and glycine},
journal = {AIChE Journal},
volume = 49,
number = 1,
pages = {203--213},
year = 2003,
doi = {10.1002/aic.690490118},
url = {http://dx.doi.org/10.1002/aic.690490118},
publisher = {Wiley Subscription Services, Inc., A Wiley Company},
issn = {1547-5905},
}
@article{knuutila-2011-post-co2,
author = "Hanna Knuutila and Ugochukwu E. Aronu and Hanne
M. Kvamsdal and Actor Chikukwa",
title = "Post combustion {CO}$_{2}$ capture with an amino acid
salt ",
journal = "Energy Procedia ",
volume = 4,
number = 0,
pages = "1550 - 1557",
year = 2011,
doi = {10.1016/j.egypro.2011.02.024},
url =
"http://www.sciencedirect.com/science/article/pii/S1876610211002219",
note = "10th International Conference on Greenhouse Gas
Control Technologies ",
issn = "1876-6102",
keywords = "\{CO2\} capture",
keywords = "\{CO2\} capture",
keywords = "\{CO2\} capture",
abstract = "Amino acid salts are of great interest as potential
solvents for \{CO2\} capture because they are
considered to be environmentally friendly. In the
present paper, results of experimental work with a
pilot plant with 3.5 M potassium sarcosine are
presented. Both absorption kinetics and energy
consumption are studied. The results show clearly
that the amino acid salt system has a high
absorption rate and high energy requirement compared
to 30wt-% MEA. The solvent system has been modeled
in an in-house tool and simulation results are
compared with the some performance results obtained
experimentally. The soft-model approach developed
for the potassium sarcosine solvent systems
represents the absorber fairly well, while it seems
to be too simplified to represent the stripper
conditions. The present study is part of an ongoing
\{EU\} project, Cesar. ",
}
@article{song-2012-carbon,
author = "Ho-Jun Song and Sangwon Park and Hyuntae Kim and
Ankur Gaur and Jin-Won Park and Seung-Jong Lee",
title = "Carbon dioxide absorption characteristics of aqueous
amino acid salt solutions ",
journal = "International Journal of Greenhouse Gas Control ",
volume = 11,
number = 0,
pages = "64 - 72",
year = 2012,
doi = {10.1016/j.ijggc.2012.07.019},
url =
"http://www.sciencedirect.com/science/article/pii/S1750583612001764",
issn = "1750-5836",
keywords = "Carbon dioxide (CO2)",
keywords = "Carbon dioxide (CO2)",
keywords = "Carbon dioxide (CO2)",
keywords = "Carbon dioxide (CO2)",
keywords = "Carbon dioxide (CO2)",
}
@PhdThesis{lerche-2012-co-captur,
author = {Benedict Mai Lerche},
title = {{CO}$_{2}$ Capture from Flue gas using Amino acid salt solutions},
school = {Technical University of Denmark},
year = 2012,
month = {August}}
@TechReport{epa-2014-inven-u,
author = {U.S. EPA},
title = {Inventory of U.S. Greenhouse Gas Emissions and Sinks: 1990-2012},
institution = {U.S.Environmental Protection Agency},
year = 2014,
month = {April}}
@TechReport{hoeven-2013-co-emiss,
author = {Maria Van der Hoeven},
title = {{CO}$_{2}$ Emissions From Fuel Combustion Highlights},
institution = {International Energy Agency},
year = 2013}
@article{abolhasani-2012-autom,
author = "Abolhasani, Milad and Singh, Mayank and Kumacheva,
Eugenia and Gunther, Axel",
title = "Automated microfluidic platform for studies of
carbon dioxide dissolution and solubility in
physical solvents",
journal = "Lab Chip",
volume = 12,
pages = "1611-1618",
year = 2012,
doi = "10.1039/C2LC21043F",
url = "http://dx.doi.org/10.1039/C2LC21043F",
issue = 9,
publisher = "The Royal Society of Chemistry",
abstract = "We present an automated microfluidic (MF) approach
for the systematic and rapid investigation of carbon
dioxide (CO2) mass transfer and solubility in
physical solvents. Uniformly sized bubbles of CO2
with lengths exceeding the width of the microchannel
(plugs) were isothermally generated in a co-flowing
physical solvent within a gas-impermeable{,}
silicon-based MF platform that is compatible with a
wide range of solvents{,} temperatures and
pressures. We dynamically determined the volume
reduction of the plugs from images that were
accommodated within a single field of view{,} six
different downstream locations of the microchannel
at any given flow condition. Evaluating plug sizes
in real time allowed our automated strategy to
suitably select inlet pressures and solvent flow
rates such that otherwise dynamically self-selecting
parameters (e.g.{,} the plug size{,} the solvent
segment size{,} and the plug velocity) could be
either kept constant or systematically
altered. Specifically{,} if a constant slug length
was imposed{,} the volumetric dissolution rate of
CO2 could be deduced from the measured rate of plug
shrinkage. The solubility of CO2 in the physical
solvent was obtained from a comparison between the
terminal and the initial plug sizes. Solubility data
were acquired every 5 min and were within 2-5%
accuracy as compared to literature data. A parameter
space consisting of the plug length{,} solvent slug
length and plug velocity at the microchannel inlet
was established for different CO2-solvent pairs with
high and low gas solubilities. In a case study{,} we
selected the gas-liquid pair CO2-dimethyl carbonate
(DMC) and volumetric mass transfer coefficients 4-30
s-1 (translating into mass transfer times between
0.25 s and 0.03 s){,} and Henry{'}s constants{,}
within the range of 6-12 MPa.",
}
@article{sun-2011-dissol,
author = "Sun, Ruopeng and Cubaud, Thomas",
title = "Dissolution of carbon dioxide bubbles and
microfluidic multiphase flows",
journal = "Lab Chip",
volume = 11,
pages = "2924-2928",
year = 2011,
doi = "10.1039/C1LC20348G",
url = "http://dx.doi.org/10.1039/C1LC20348G",
issue = 17,
publisher = "The Royal Society of Chemistry",
abstract = "We experimentally study the dissolution of carbon
dioxide bubbles into common liquids (water{,}
ethanol{,} and methanol) using microfluidic
devices. Elongated bubbles are individually produced
using a hydrodynamic focusing section into a compact
microchannel. The initial bubble size is determined
based on the fluid volumetric flow rates of
injection and the channel geometry. By contrast{,}
the bubble dissolution rate is found to depend on
the inlet gas pressure and the fluid pair
composition. For short periods of time after the
fluids initial contact{,} the bubble length
decreases linearly with time. We show that the
initial rate of bubble shrinkage is proportional to
the ratio of the diffusion coefficient and the
Henry{'}s law constant associated with each fluid
pair. Our study shows the possibility to rapidly
impregnate liquids with CO2 over short distances
using microfluidic technology.",
}
@InProceedings{m.-model-predic,
author = {M. Abolhasani, E. Kumacheva, A. Gunther},
title = {Model-Predictive Strategy for Exploration of Carbon Dioxide Dissolution and Mass Transfer},
OPTcrossref = {},
OPTkey = {},
OPTbooktitle = {},
OPTyear = {2011},
OPTeditor = {},
OPTvolume = {},
OPTnumber = {},
OPTseries = {},
OPTpages = {},
OPTmonth = {},
OPTaddress = {},
OPTorganization = {University of Toronto,Canada},
OPTpublisher = {},
OPTnote = {},
OPTannote = {}
}
@article{li-2012-microf-study,
author = {Li, Wei and Liu, Kun and Simms, Ryan and Greener,
Jesse and Jagadeesan, Dinesh and Pinto, Sascha and
Gunther, Axel and Kumacheva, Eugenia},
title = {Microfluidic Study of Fast Gas-Liquid Reactions},
journal = {Journal of the American Chemical Society},
volume = 134,
number = 6,
pages = {3127-3132},
year = 2012,
doi = {10.1021/ja2101278},
url = { http://dx.doi.org/10.1021/ja2101278 },
note = {PMID: 22176612},
eprint = { http://dx.doi.org/10.1021/ja2101278 },
}
@article{zhu-2014-taylor-co2,
author = "Chunying Zhu and Chunfang Li and Xiqun Gao and
Youguang Ma and Dongzhi Liu",
title = "Taylor flow and mass transfer of {CO}$_{2}$ chemical
absorption into {MEA} aqueous solutions in a
T-junction microchannel ",
journal = "International Journal of Heat and Mass Transfer ",
volume = 73,
number = 0,
pages = "492 - 499",
year = 2014,
doi = {10.1016/j.ijheatmasstransfer.2014.02.040},
url =
"http://www.sciencedirect.com/science/article/pii/S0017931014001574",
issn = "0017-9310",
keywords = "T-junction microchannel",
keywords = "T-junction microchannel",
keywords = "T-junction microchannel",
keywords = "T-junction microchannel",
keywords = "T-junction microchannel",
keywords = "T-junction microchannel",
}
@article{yang-2014-mass,
author = "Lu Yang and Jing Tan and Kai Wang and Guangsheng
Luo",
title = "Mass transfer characteristics of bubbly flow in
microchannels ",
journal = "Chemical Engineering Science ",
volume = 109,
number = 0,
pages = "306 - 314",
year = 2014,
doi = {10.1016/j.ces.2014.02.004},
url =
"http://www.sciencedirect.com/science/article/pii/S0009250914000529",
issn = "0009-2509",
keywords = "Microfluidic device",
keywords = "Microfluidic device",
keywords = "Microfluidic device",
keywords = "Microfluidic device",
keywords = "Microfluidic device",
keywords = "Microfluidic device",
}
@article{voicu-2014-microf-studies,
author = {Voicu, Dan and Abolhasani, Milad and Choueiri,
Rachelle and Lestari, Gabriella and Seiler, Caroline
and Menard, Gabriel and Greener, Jesse and Guenther,
Axel and Stephan, Douglas W. and Kumacheva, Eugenia},
title = {Microfluidic Studies of {CO}$_{2}$ Sequestration by
Frustrated {L}ewis Pairs},
journal = {Journal of the American Chemical Society},
volume = 136,
number = 10,
pages = {3875-3880},
year = 2014,
doi = {10.1021/ja411601a},
note = {PMID: 24555752},
url = { http://dx.doi.org/10.1021/ja411601a },
eprint = { http://dx.doi.org/10.1021/ja411601a },
}
@article{samarakoon-2013-equil-mea,
author = "P.A. Gamunu L. Samarakoon and Niels H. Andersen and
Cristina Perinu and Klaus-J. Jens",
title = "Equilibria of {MEA}, {DEA} and {AMP} with
Bicarbonate and Carbamate: {A} {R}aman Study ",
journal = "Energy Procedia ",
volume = 37,
number = 0,
pages = "2002 - 2010",
year = 2013,
doi = {10.1016/j.egypro.2013.06.080},
url =
"http://www.sciencedirect.com/science/article/pii/S1876610213003238",
note = "GHGT-11 ",
issn = "1876-6102",
keywords = "\{CCS\}",
keywords = "\{CCS\}",
keywords = "\{CCS\}",
keywords = "\{CCS\}",
keywords = "\{CCS\}",
}
@article{wen-1995-ammon-carbon,
author = {Wen, Nanping and Brooker, Murray H.},
title = {Ammonium Carbonate, Ammonium Bicarbonate, and
Ammonium Carbamate Equilibria: A {R}aman Study},
journal = {The Journal of Physical Chemistry},
volume = 99,
number = 1,
pages = {359-368},
year = 1995,
doi = {10.1021/j100001a054},
url = { http://dx.doi.org/10.1021/j100001a054 },
eprint = { http://dx.doi.org/10.1021/j100001a054 },
}
@TechReport{metz-2005-special-repor,
author = {Metz, B.},
title = {Special Report on Carbon Dioxide Capture and Storage},
institution = {IPCC},
year = {2005},
OPTkey = {},
OPTtype = {},
OPTnumber = {},
OPTaddress = {},
OPTmonth = {},
OPTnote = {},
OPTannote = {}
}
@article{ye-2012-proces-charac,
author = "Chunbo Ye and Guangwen Chen and Quan Yuan",
title = "Process Characteristics of \ce{CO2} Absorption by
Aqueous Monoethanolamine in a Microchannel Reactor ",
journal = "Chinese Journal of Chemical Engineering ",
volume = 20,
number = 1,
pages = "111 - 119",
year = 2012,
doi = {10.1016/S1004-9541(12)60370-X},
url =
"http://www.sciencedirect.com/science/article/pii/S100495411260370X",
issn = "1004-9541",
keywords = "miniaturization",
keywords = "miniaturization",
keywords = "miniaturization",
keywords = "miniaturization",
keywords = "miniaturization",
keywords = "miniaturization",
}
@article{frantz-1998-raman,
author = "John D. Frantz",
title = "Raman spectra of potassium carbonate and bicarbonate
aqueous fluids at elevated temperatures and
pressures: {C}omparison with theoretical simulations ",
journal = "Chemical Geology ",
volume = 152,
number = "3-4",
pages = "211 - 225",
year = 1998,
doi = {10.1016/S0009-2541(98)00058-8},
url =
"http://www.sciencedirect.com/science/article/pii/S0009254198000588",
issn = "0009-2541",
keywords = "Potassium carbonate",
keywords = "Potassium carbonate",
keywords = "Potassium carbonate",
}
@Book{2001-infrar-raman,
ALTauthor = {George Socrates},
ALTeditor = {},
title = {Infrared and {R}aman Characteristic Group Frequencies: Tables and Charts},
publisher = {John Wiley \& Sons Ltd.},
year = {2001},
OPTkey = {},
OPTvolume = {},
OPTnumber = {},
OPTseries = {},
OPTaddress = {},
OPTedition = {3rd},
OPTmonth = {},
OPTnote = {},
OPTannote = {}
}
@article{huang-2013-therm-co2,
author = "Quanzhen Huang and Saloni Bhatnagar and Joseph
E. Remias and John P. Selegue and Kunlei Liu",
title = {Thermal Degradation of Amino Acid Salts in \ce{CO2}
Capture},
journal = "International Journal of Greenhouse Gas Control ",
volume = 19,
pages = "243 - 250",
year = 2013,
doi = {10.1016/j.ijggc.2013.09.003},
url =
"http://www.sciencedirect.com/science/article/pii/S1750583613003356",
issn = "1750-5836",
keywords = "Thermal degradation",
keywords = "Thermal degradation",
keywords = "Thermal degradation",
keywords = "Thermal degradation",
}
@article{lefortier-2012-rapid-co2,
author = "Lefortier, Stephanie G. R. and Hamersma, Peter
J. and Bardow, Andre and Kreutzer, Michiel T.",
title = {Rapid Microfluidic Screening of {CO}$_2$ Solubility and
Diffusion in Pure and Mixed Solvents},
journal = "Lab Chip",
volume = 12,
pages = "3387-3391",
year = 2012,
doi = "10.1039/C2LC40260B",
url = "http://dx.doi.org/10.1039/C2LC40260B",
issue = 18,
publisher = "The Royal Society of Chemistry",
abstract = "We present a high-throughput method to determine
rapidly and simultaneously the solubility and the
diffusivity of CO2 in pure solvents and mixtures
using segmented flow in a microchannel. Gas bubbles
are injected via a T-junction into the liquid stream
and the evolution of the bubbles{'} lengths are
followed visually. We measure both solubility and
diffusion coefficient from the shrinkage and
expansion of the bubbles. The presented method is
used to study the physical absorption of CO2 in
various pure solvents and to screen the complete
composition space of binary and ternary mixtures.",
}
@article{paul-2012-kinet,
author = {Subham Paul and Kaj Thomsen},
title = {Kinetics of Absorption of Carbon Dioxide Into Aqueous
Potassium Salt of Proline},
journal = {International Journal of Greenhouse Gas Control},
volume = 8,
number = {nil},
pages = {169-179},
year = 2012,
doi = {10.1016/j.ijggc.2012.02.013},
url = {http://dx.doi.org/10.1016/j.ijggc.2012.02.013},
date_added = {Sat Oct 24 19:19:47 2015},
}