Superclass-Conditional Gaussian Mixture Model For Learning Fine-Grained Embeddings (ICLR 2022 Spotlight)
This is the code for the paper "Superclass-Conditional Gaussian Mixture Model for Learning Fine-Grained Embeddings" in ICLR 2022 (pdf). This code provides a demo on BREEDS dataset, and it can be adapted to other datasets including CIFAR-100 and tieredImageNet.
The experiments were done using python3.7, with the following packages:
- learn2learn==0.1.5
- matplotlib==3.4.2
- networkx==2.5.1
- numpy==1.20.3
- pandas==1.3.0
- robustness==1.2.1.post2
- scikit-learn==0.24.2
- scipy==1.7.0
- seaborn==0.11.1
- torch==1.4.0+cu92
- torchvision==0.5.0+cu92
- Download the ImageNet dataset.
- Following the official BREEDS repo, run
import os
from robustness.tools.breeds_helpers import setup_breeds
info_dir= "[your_imagenet_path]/ILSVRC/BREEDS"
if not (os.path.exists(info_dir) and len(os.listdir(info_dir))):
print("Downloading class hierarchy information into `info_dir`")
setup_breeds(info_dir)
- The directory structure is
└── ILSVRC
├── Annotations
│ └── CLS-LOC
├── BREEDS
│ ├── class_hierarchy.txt
│ ├── dataset_class_info.json
│ └── node_names.txt
├── Data
│ └── CLS-LOC
├── ImageSets
│ └── CLS-LOC
└── Meta
├── imagenet_class_index.json
├── test.json
├── wordnet.is_a.txt
└── words.txt
CIFAR-100 can be downloaded from [link].
- Once downloaded, use
dataset_cifar.py
indataset/
folder to generate minibatches for model training.
TieredImageNet can be downloaded from [link].
- Once downloaded, use
dataset_tiered_imagenet.py
indataset/
folder to generate minibatches for model training.
First, create a directory to save the pre-trained models.
mkdir pretrain_model
To train SCGM with a generic encoder (i.e., SCGM-G) on Living17 dataset, run
python train_scgm_g.py \
--data [path to data directory] \
--workers 32 \
--epochs 200 \
--batch_size 256 \
--hiddim 128 \
--tau 0.1 \
--alpha 0.5 \
--lmd 25 \
--n-subclass 100 \
--n-class 17 \
--dataset living17
To train SCGM with a momentum-based encoder (i.e., SCGM-A) on Living17 dataset, run
python train_scgm_g.py \
--data [path to data directory] \
--arch resnet50 \
--workers 32 \
--epochs 200 \
--batch_size 256 \
--hiddim 128 \
--queue multi \
--metric angular \
--head-type seq_em \
--cst-t 0.2 \
--tau1 0.1 \
--alpha 0.5 \
--lmd 25 \
--n-subclass 100 \
--n-class 17 \
--dataset living17
The default parameters were set for training on BREEDS
dataset. To check the model parameters, run
python train_scgm_g.py -h
python train_scgm_a.py -h
To test the performance of the pre-trained SCGM-G on the cross-granularity few-shot (CGFS) learning setting, run
python test_scgm_g.py
--data [path to data directory] \
--batch_size 256 \
--n-test-runs 1000 \
--n-ways 5 \
--n-shots 1 \
--n-queries 15 \
--feat-norm \
--classifier LR \
--hiddim 128 \
--n-subclass 100 \
--n-class 17 \
--dataset living17
To test the performance of the pre-trained SCGM-A, run
python test_scgm_a.py
--data [path to data directory] \
--arch resnet50 \
--batch_size 256 \
--n-test-runs 1000 \
--n-ways 5 \
--n-shots 1 \
--n-queries 15 \
--feat-norm \
--classifier LR \
--hiddim 128 \
--n-subclass 100 \
--n-class 17 \
--dataset living17
Similarly, to test the performance on the fine-grained intra-class setting, run
python test_fg_scgm_g.py
python test_fg_scgm_a.py
To visualize the embeddings, include the lines 318 to 340 in train_scgm_g.py
and the lines 341 to 363 in train_scgm_a.py
.
@inproceedings{ni2022superclass,
title={Superclass-Conditional Gaussian Mixture Model For Learning Fine-Grained Embeddings},
author={Ni, Jingchao and Cheng, Wei and Chen, Zhengzhang and Asakura, Takayoshi and Soma, Tomoya and Kato, Sho and Chen, Haifeng},
booktitle={International Conference on Learning Representations},
year={2022}
}