forked from yblir/multiple-attention-modify
-
Notifications
You must be signed in to change notification settings - Fork 0
/
train_raw.py
215 lines (198 loc) · 8.3 KB
/
train_raw.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
import os
import time
import logging
import warnings
import numpy
import torch
import torch.nn as nn
import torch.multiprocessing as mp
import torch.nn.functional as F
from torch.utils.data import DataLoader
import torch.distributed as dist
from models.MAT import MAT
from datasets.dataset import DeepfakeDataset
from AGDA import AGDA
import cv2
from utils import dist_average, ACC
# from torch.utils.tensorboard import SummaryWriter
cv2.setNumThreads(0)
cv2.ocl.setUseOpenCL(False)
# GPU settings
assert torch.cuda.is_available()
# torch.autograd.set_detect_anomaly(True)
def load_state(net, ckpt):
sd = net.state_dict()
nd = {}
goodmatch = True
for i in ckpt:
if i in sd and sd[i].shape == ckpt[i].shape:
nd[i] = ckpt[i]
# print(i)
else:
print('fail to load %s' % i)
goodmatch = False
net.load_state_dict(nd, strict=False)
return goodmatch
def main_worker(local_rank, world_size, rank_offset, config):
rank = local_rank + rank_offset
if rank == 0:
logging.basicConfig(
filename=os.path.join('runs', config.name, 'train.log'),
filemode='a',
format='%(asctime)s: %(levelname)s: [%(filename)s:%(lineno)d]: %(message)s',
level=logging.INFO)
warnings.filterwarnings("ignore")
dist.init_process_group(backend='nccl', init_method=config.url, world_size=world_size, rank=rank)
# if rank==0:
# try:
# os.remove('/tmp/.pytorch_distribute')
# except:
# pass
numpy.random.seed(1234567)
torch.manual_seed(1234567)
torch.cuda.manual_seed(1234567)
torch.cuda.set_device(local_rank)
train_dataset = DeepfakeDataset(phase='train', **config.train_dataset)
validate_dataset = DeepfakeDataset(phase='test', **config.val_dataset)
train_sampler = torch.utils.data.distributed.DistributedSampler(train_dataset)
validate_sampler = torch.utils.data.distributed.DistributedSampler(validate_dataset)
train_loader = torch.utils.data.DataLoader(train_dataset, batch_size=config.batch_size, sampler=train_sampler,
pin_memory=True, num_workers=config.workers)
validate_loader = torch.utils.data.DataLoader(validate_dataset, batch_size=config.batch_size,
sampler=validate_sampler, pin_memory=True, num_workers=config.workers)
logs = {}
start_epoch = 0
net = MAT(**config.net_config)
for i in config.freeze:
if 'backbone' in i:
net.net.requires_grad_(False)
elif 'attention' in i:
net.attentions.requires_grad_(False)
elif 'feature_center' in i:
net.auxiliary_loss.alpha = 0
elif 'texture_enhance' in i:
net.texture_enhance.requires_grad_(False)
elif 'fcs' in i:
net.projection_local.requires_grad_(False)
net.project_final.requires_grad_(False)
net.ensemble_classifier_fc.requires_grad_(False)
else:
if 'xception' in str(type(net.net)):
for j in net.net.seq:
if j[0] == i:
for t in j[1]:
t.requires_grad_(False)
if 'EfficientNet' in str(type(net.net)):
if i == 'b0':
net.net._conv_stem.requires_grad_(False)
stage_map = net.net.stage_map
for c in range(len(stage_map) - 2, -1, -1):
if not stage_map[c]:
stage_map[c] = stage_map[c + 1]
for c1, c2 in zip(stage_map, net.net._blocks):
if c1 == i:
c2.requires_grad_(False)
net = nn.SyncBatchNorm.convert_sync_batchnorm(net).to(local_rank)
net = nn.parallel.DistributedDataParallel(net, device_ids=[local_rank], output_device=local_rank,
find_unused_parameters=True)
AG = AGDA(**config.AGDA_config).to(local_rank)
optimizer = torch.optim.AdamW(net.parameters(), lr=config.learning_rate, betas=config.adam_betas,
weight_decay=config.weight_decay)
scheduler = torch.optim.lr_scheduler.StepLR(optimizer, step_size=config.scheduler_step,
gamma=config.scheduler_gamma)
if config.ckpt:
loc = 'cuda:{}'.format(local_rank)
checkpoint = torch.load(config.ckpt, map_location=loc)
logs = checkpoint['logs']
start_epoch = int(logs['epoch']) + 1
if load_state(net.module, checkpoint['state_dict']) and config.resume_optim:
optimizer.load_state_dict(checkpoint['optimizer_state'])
try:
scheduler.load_state_dict(checkpoint['scheduler_state'])
except:
pass
else:
net.module.auxiliary_loss.alpha = torch.tensor(config.alpha)
del checkpoint
torch.cuda.empty_cache()
for epoch in range(start_epoch, config.epochs):
logs['epoch'] = epoch
train_sampler.set_epoch(epoch)
train_sampler.dataset.next_epoch()
run(logs=logs, data_loader=train_loader, net=net, optimizer=optimizer, local_rank=local_rank, config=config,
AG=AG, phase='train')
run(logs=logs, data_loader=validate_loader, net=net, optimizer=optimizer, local_rank=local_rank, config=config,
phase='valid')
net.module.auxiliary_loss.alpha *= config.alpha_decay
scheduler.step()
if local_rank == 0:
torch.save({
'logs' : logs,
'state_dict' : net.module.state_dict(),
'optimizer_state': optimizer.state_dict(),
'scheduler_state': scheduler.state_dict()}, 'checkpoints/' + config.name + '/ckpt_%s.pth' % epoch)
dist.barrier()
def train_loss(loss_pack, config):
if 'loss' in loss_pack:
return loss_pack['loss']
loss = config.ensemble_loss_weight * loss_pack['ensemble_loss'] + config.aux_loss_weight * loss_pack['aux_loss']
if config.AGDA_loss_weight != 0:
loss += config.AGDA_loss_weight * loss_pack['AGDA_ensemble_loss'] + config.match_loss_weight * loss_pack[
'match_loss']
return loss
def run(logs, data_loader, net, optimizer, local_rank, config, AG=None, phase='train'):
if local_rank == 0:
print('start ', phase)
if config.AGDA_loss_weight == 0:
AG = None
recorder = {}
if config.feature_layer == 'logits':
record_list = ['loss', 'acc']
else:
record_list = ['ensemble_loss', 'aux_loss', 'ensemble_acc']
if AG is not None:
record_list += ['AGDA_ensemble_loss', 'match_loss']
for i in record_list:
recorder[i] = dist_average(local_rank)
# begin training
start_time = time.time()
if phase == 'train':
net.train()
else:
net.eval()
for i, (X, y) in enumerate(data_loader):
X = X.to(local_rank, non_blocking=True)
y = y.to(local_rank, non_blocking=True)
with torch.set_grad_enabled(phase == 'train'):
loss_pack = net(X, y, train_batch=True, AG=AG)
if phase == 'train':
batch_loss = train_loss(loss_pack, config)
batch_loss.backward()
optimizer.step()
optimizer.zero_grad()
with torch.no_grad():
if config.feature_layer == 'logits':
loss_pack['acc'] = ACC(loss_pack['logits'], y)
else:
loss_pack['ensemble_acc'] = ACC(loss_pack['ensemble_logit'], y)
for i in record_list:
recorder[i].step(loss_pack[i])
# end of this epoch
batch_info = []
for i in record_list:
mesg = recorder[i].get()
logs[i] = mesg
batch_info.append('{}:{:.4f}'.format(i, mesg))
end_time = time.time()
# write log for this epoch
if local_rank == 0:
logging.info('{}: {}, Time {:3.2f}'.format(phase, ' '.join(batch_info), end_time - start_time))
def distributed_train(config, world_size=0, num_gpus=0, rank_offset=0):
if not num_gpus:
num_gpus = torch.cuda.device_count()
if not world_size:
world_size = num_gpus
mp.spawn(main_worker, nprocs=num_gpus, args=(world_size, rank_offset, config))
torch.cuda.empty_cache()
if __name__ == '__main__':
distributed_train()