forked from SebLague/Procedural-Planets
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Noise.cs
335 lines (286 loc) · 10.3 KB
/
Noise.cs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
/*
This file is part of libnoise-dotnet.
libnoise-dotnet is free software: you can redistribute it and/or modify
it under the terms of the GNU Lesser General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
libnoise-dotnet is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public License
along with libnoise-dotnet. If not, see <http://www.gnu.org/licenses/>.
Simplex Noise in 2D, 3D and 4D. Based on the example code of this paper:
http://staffwww.itn.liu.se/~stegu/simplexnoise/simplexnoise.pdf
From Stefan Gustavson, Linkping University, Sweden (stegu at itn dot liu dot se)
From Karsten Schmidt (slight optimizations & restructuring)
Some changes by Sebastian Lague for use in a tutorial series.
*/
/*
* Noise module that outputs 3-dimensional Simplex Perlin noise.
* This algorithm has a computational cost of O(n+1) where n is the dimension.
*
* This noise module outputs values that usually range from
* -1.0 to +1.0, but there are no guarantees that all output values will exist within that range.
*/
using System;
public class Noise
{
#region Values
/// Initial permutation table
static readonly int[] Source = {
151, 160, 137, 91, 90, 15, 131, 13, 201, 95, 96, 53, 194, 233, 7, 225, 140, 36, 103, 30, 69, 142,
8, 99, 37, 240, 21, 10, 23, 190, 6, 148, 247, 120, 234, 75, 0, 26, 197, 62, 94, 252, 219, 203,
117, 35, 11, 32, 57, 177, 33, 88, 237, 149, 56, 87, 174, 20, 125, 136, 171, 168, 68, 175, 74, 165,
71, 134, 139, 48, 27, 166, 77, 146, 158, 231, 83, 111, 229, 122, 60, 211, 133, 230, 220, 105, 92, 41,
55, 46, 245, 40, 244, 102, 143, 54, 65, 25, 63, 161, 1, 216, 80, 73, 209, 76, 132, 187, 208, 89,
18, 169, 200, 196, 135, 130, 116, 188, 159, 86, 164, 100, 109, 198, 173, 186, 3, 64, 52, 217, 226, 250,
124, 123, 5, 202, 38, 147, 118, 126, 255, 82, 85, 212, 207, 206, 59, 227, 47, 16, 58, 17, 182, 189,
28, 42, 223, 183, 170, 213, 119, 248, 152, 2, 44, 154, 163, 70, 221, 153, 101, 155, 167, 43, 172, 9,
129, 22, 39, 253, 19, 98, 108, 110, 79, 113, 224, 232, 178, 185, 112, 104, 218, 246, 97, 228, 251, 34,
242, 193, 238, 210, 144, 12, 191, 179, 162, 241, 81, 51, 145, 235, 249, 14, 239, 107, 49, 192, 214, 31,
181, 199, 106, 157, 184, 84, 204, 176, 115, 121, 50, 45, 127, 4, 150, 254, 138, 236, 205, 93, 222, 114,
67, 29, 24, 72, 243, 141, 128, 195, 78, 66, 215, 61, 156, 180
};
const int RandomSize = 256;
const double Sqrt3 = 1.7320508075688772935;
const double Sqrt5 = 2.2360679774997896964;
int[] _random;
/// Skewing and unskewing factors for 2D, 3D and 4D,
/// some of them pre-multiplied.
const double F2 = 0.5*(Sqrt3 - 1.0);
const double G2 = (3.0 - Sqrt3)/6.0;
const double G22 = G2*2.0 - 1;
const double F3 = 1.0/3.0;
const double G3 = 1.0/6.0;
const double F4 = (Sqrt5 - 1.0)/4.0;
const double G4 = (5.0 - Sqrt5)/20.0;
const double G42 = G4*2.0;
const double G43 = G4*3.0;
const double G44 = G4*4.0 - 1.0;
/// <summary>
/// Gradient vectors for 3D (pointing to mid points of all edges of a unit
/// cube)
/// </summary>
static readonly int[][] Grad3 =
{
new[] {1, 1, 0}, new[] {-1, 1, 0}, new[] {1, -1, 0},
new[] {-1, -1, 0}, new[] {1, 0, 1}, new[] {-1, 0, 1},
new[] {1, 0, -1}, new[] {-1, 0, -1}, new[] {0, 1, 1},
new[] {0, -1, 1}, new[] {0, 1, -1}, new[] {0, -1, -1}
};
#endregion
public Noise()
{
Randomize(0);
}
public Noise(int seed)
{
Randomize(seed);
}
/// <summary>
/// Generates value, typically in range [-1, 1]
/// </summary>
public float Evaluate(UnityEngine.Vector3 point)
{
double x = point.x;
double y = point.y;
double z = point.z;
double n0 = 0, n1 = 0, n2 = 0, n3 = 0;
// Noise contributions from the four corners
// Skew the input space to determine which simplex cell we're in
double s = (x + y + z)*F3;
// for 3D
int i = FastFloor(x + s);
int j = FastFloor(y + s);
int k = FastFloor(z + s);
double t = (i + j + k)*G3;
// The x,y,z distances from the cell origin
double x0 = x - (i - t);
double y0 = y - (j - t);
double z0 = z - (k - t);
// For the 3D case, the simplex shape is a slightly irregular tetrahedron.
// Determine which simplex we are in.
// Offsets for second corner of simplex in (i,j,k)
int i1, j1, k1;
// coords
int i2, j2, k2; // Offsets for third corner of simplex in (i,j,k) coords
if (x0 >= y0)
{
if (y0 >= z0)
{
// X Y Z order
i1 = 1;
j1 = 0;
k1 = 0;
i2 = 1;
j2 = 1;
k2 = 0;
}
else if (x0 >= z0)
{
// X Z Y order
i1 = 1;
j1 = 0;
k1 = 0;
i2 = 1;
j2 = 0;
k2 = 1;
}
else
{
// Z X Y order
i1 = 0;
j1 = 0;
k1 = 1;
i2 = 1;
j2 = 0;
k2 = 1;
}
}
else
{
// x0 < y0
if (y0 < z0)
{
// Z Y X order
i1 = 0;
j1 = 0;
k1 = 1;
i2 = 0;
j2 = 1;
k2 = 1;
}
else if (x0 < z0)
{
// Y Z X order
i1 = 0;
j1 = 1;
k1 = 0;
i2 = 0;
j2 = 1;
k2 = 1;
}
else
{
// Y X Z order
i1 = 0;
j1 = 1;
k1 = 0;
i2 = 1;
j2 = 1;
k2 = 0;
}
}
// A step of (1,0,0) in (i,j,k) means a step of (1-c,-c,-c) in (x,y,z),
// a step of (0,1,0) in (i,j,k) means a step of (-c,1-c,-c) in (x,y,z),
// and
// a step of (0,0,1) in (i,j,k) means a step of (-c,-c,1-c) in (x,y,z),
// where c = 1/6.
// Offsets for second corner in (x,y,z) coords
double x1 = x0 - i1 + G3;
double y1 = y0 - j1 + G3;
double z1 = z0 - k1 + G3;
// Offsets for third corner in (x,y,z)
double x2 = x0 - i2 + F3;
double y2 = y0 - j2 + F3;
double z2 = z0 - k2 + F3;
// Offsets for last corner in (x,y,z)
double x3 = x0 - 0.5;
double y3 = y0 - 0.5;
double z3 = z0 - 0.5;
// Work out the hashed gradient indices of the four simplex corners
int ii = i & 0xff;
int jj = j & 0xff;
int kk = k & 0xff;
// Calculate the contribution from the four corners
double t0 = 0.6 - x0*x0 - y0*y0 - z0*z0;
if (t0 > 0)
{
t0 *= t0;
int gi0 = _random[ii + _random[jj + _random[kk]]]%12;
n0 = t0*t0*Dot(Grad3[gi0], x0, y0, z0);
}
double t1 = 0.6 - x1*x1 - y1*y1 - z1*z1;
if (t1 > 0)
{
t1 *= t1;
int gi1 = _random[ii + i1 + _random[jj + j1 + _random[kk + k1]]]%12;
n1 = t1*t1*Dot(Grad3[gi1], x1, y1, z1);
}
double t2 = 0.6 - x2*x2 - y2*y2 - z2*z2;
if (t2 > 0)
{
t2 *= t2;
int gi2 = _random[ii + i2 + _random[jj + j2 + _random[kk + k2]]]%12;
n2 = t2*t2*Dot(Grad3[gi2], x2, y2, z2);
}
double t3 = 0.6 - x3*x3 - y3*y3 - z3*z3;
if (t3 > 0)
{
t3 *= t3;
int gi3 = _random[ii + 1 + _random[jj + 1 + _random[kk + 1]]]%12;
n3 = t3*t3*Dot(Grad3[gi3], x3, y3, z3);
}
// Add contributions from each corner to get the final noise value.
// The result is scaled to stay just inside [-1,1]
return (float)(n0 + n1 + n2 + n3)*32;
}
void Randomize(int seed)
{
_random = new int[RandomSize * 2];
if (seed != 0)
{
// Shuffle the array using the given seed
// Unpack the seed into 4 bytes then perform a bitwise XOR operation
// with each byte
var F = new byte[4];
UnpackLittleUint32(seed, ref F);
for (int i = 0; i < Source.Length; i++)
{
_random[i] = Source[i] ^ F[0];
_random[i] ^= F[1];
_random[i] ^= F[2];
_random[i] ^= F[3];
_random[i + RandomSize] = _random[i];
}
}
else
{
for (int i = 0; i < RandomSize; i++)
_random[i + RandomSize] = _random[i] = Source[i];
}
}
static double Dot(int[] g, double x, double y, double z, double t)
{
return g[0] * x + g[1] * y + g[2] * z + g[3] * t;
}
static double Dot(int[] g, double x, double y, double z)
{
return g[0] * x + g[1] * y + g[2] * z;
}
static double Dot(int[] g, double x, double y)
{
return g[0] * x + g[1] * y;
}
static int FastFloor(double x)
{
return x >= 0 ? (int)x : (int)x - 1;
}
/// <summary>
/// Unpack the given integer (int32) to an array of 4 bytes in little endian format.
/// If the length of the buffer is too smal, it wil be resized.
/// </summary>
/// <param name="value">The value.</param>
/// <param name="buffer">The output buffer.</param>
static byte[] UnpackLittleUint32(int value, ref byte[] buffer)
{
if (buffer.Length < 4)
Array.Resize(ref buffer, 4);
buffer[0] = (byte)(value & 0x00ff);
buffer[1] = (byte)((value & 0xff00) >> 8);
buffer[2] = (byte)((value & 0x00ff0000) >> 16);
buffer[3] = (byte)((value & 0xff000000) >> 24);
return buffer;
}
}