diff --git a/Noise.cs b/Noise.cs
new file mode 100644
index 0000000..7569ae7
--- /dev/null
+++ b/Noise.cs
@@ -0,0 +1,335 @@
+/*
+This file is part of libnoise-dotnet.
+libnoise-dotnet is free software: you can redistribute it and/or modify
+it under the terms of the GNU Lesser General Public License as published by
+the Free Software Foundation, either version 3 of the License, or
+(at your option) any later version.
+
+libnoise-dotnet is distributed in the hope that it will be useful,
+but WITHOUT ANY WARRANTY; without even the implied warranty of
+MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+GNU Lesser General Public License for more details.
+
+You should have received a copy of the GNU Lesser General Public License
+along with libnoise-dotnet. If not, see .
+
+Simplex Noise in 2D, 3D and 4D. Based on the example code of this paper:
+http://staffwww.itn.liu.se/~stegu/simplexnoise/simplexnoise.pdf
+
+From Stefan Gustavson, Linkping University, Sweden (stegu at itn dot liu dot se)
+From Karsten Schmidt (slight optimizations & restructuring)
+
+Some changes by Sebastian Lague for use in a tutorial series.
+*/
+
+/*
+ * Noise module that outputs 3-dimensional Simplex Perlin noise.
+ * This algorithm has a computational cost of O(n+1) where n is the dimension.
+ *
+ * This noise module outputs values that usually range from
+ * -1.0 to +1.0, but there are no guarantees that all output values will exist within that range.
+*/
+
+using System;
+public class Noise
+{
+ #region Values
+ /// Initial permutation table
+ static readonly int[] Source = {
+ 151, 160, 137, 91, 90, 15, 131, 13, 201, 95, 96, 53, 194, 233, 7, 225, 140, 36, 103, 30, 69, 142,
+ 8, 99, 37, 240, 21, 10, 23, 190, 6, 148, 247, 120, 234, 75, 0, 26, 197, 62, 94, 252, 219, 203,
+ 117, 35, 11, 32, 57, 177, 33, 88, 237, 149, 56, 87, 174, 20, 125, 136, 171, 168, 68, 175, 74, 165,
+ 71, 134, 139, 48, 27, 166, 77, 146, 158, 231, 83, 111, 229, 122, 60, 211, 133, 230, 220, 105, 92, 41,
+ 55, 46, 245, 40, 244, 102, 143, 54, 65, 25, 63, 161, 1, 216, 80, 73, 209, 76, 132, 187, 208, 89,
+ 18, 169, 200, 196, 135, 130, 116, 188, 159, 86, 164, 100, 109, 198, 173, 186, 3, 64, 52, 217, 226, 250,
+ 124, 123, 5, 202, 38, 147, 118, 126, 255, 82, 85, 212, 207, 206, 59, 227, 47, 16, 58, 17, 182, 189,
+ 28, 42, 223, 183, 170, 213, 119, 248, 152, 2, 44, 154, 163, 70, 221, 153, 101, 155, 167, 43, 172, 9,
+ 129, 22, 39, 253, 19, 98, 108, 110, 79, 113, 224, 232, 178, 185, 112, 104, 218, 246, 97, 228, 251, 34,
+ 242, 193, 238, 210, 144, 12, 191, 179, 162, 241, 81, 51, 145, 235, 249, 14, 239, 107, 49, 192, 214, 31,
+ 181, 199, 106, 157, 184, 84, 204, 176, 115, 121, 50, 45, 127, 4, 150, 254, 138, 236, 205, 93, 222, 114,
+ 67, 29, 24, 72, 243, 141, 128, 195, 78, 66, 215, 61, 156, 180
+ };
+
+ const int RandomSize = 256;
+ const double Sqrt3 = 1.7320508075688772935;
+ const double Sqrt5 = 2.2360679774997896964;
+ int[] _random;
+
+ /// Skewing and unskewing factors for 2D, 3D and 4D,
+ /// some of them pre-multiplied.
+ const double F2 = 0.5*(Sqrt3 - 1.0);
+
+ const double G2 = (3.0 - Sqrt3)/6.0;
+ const double G22 = G2*2.0 - 1;
+
+ const double F3 = 1.0/3.0;
+ const double G3 = 1.0/6.0;
+
+ const double F4 = (Sqrt5 - 1.0)/4.0;
+ const double G4 = (5.0 - Sqrt5)/20.0;
+ const double G42 = G4*2.0;
+ const double G43 = G4*3.0;
+ const double G44 = G4*4.0 - 1.0;
+
+ ///
+ /// Gradient vectors for 3D (pointing to mid points of all edges of a unit
+ /// cube)
+ ///
+ static readonly int[][] Grad3 =
+ {
+ new[] {1, 1, 0}, new[] {-1, 1, 0}, new[] {1, -1, 0},
+ new[] {-1, -1, 0}, new[] {1, 0, 1}, new[] {-1, 0, 1},
+ new[] {1, 0, -1}, new[] {-1, 0, -1}, new[] {0, 1, 1},
+ new[] {0, -1, 1}, new[] {0, 1, -1}, new[] {0, -1, -1}
+ };
+ #endregion
+
+ public Noise()
+ {
+ Randomize(0);
+ }
+
+ public Noise(int seed)
+ {
+ Randomize(seed);
+ }
+
+
+ ///
+ /// Generates value, typically in range [-1, 1]
+ ///
+ public float Evaluate(UnityEngine.Vector3 point)
+ {
+ double x = point.x;
+ double y = point.y;
+ double z = point.z;
+ double n0 = 0, n1 = 0, n2 = 0, n3 = 0;
+
+ // Noise contributions from the four corners
+ // Skew the input space to determine which simplex cell we're in
+ double s = (x + y + z)*F3;
+
+ // for 3D
+ int i = FastFloor(x + s);
+ int j = FastFloor(y + s);
+ int k = FastFloor(z + s);
+
+ double t = (i + j + k)*G3;
+
+ // The x,y,z distances from the cell origin
+ double x0 = x - (i - t);
+ double y0 = y - (j - t);
+ double z0 = z - (k - t);
+
+ // For the 3D case, the simplex shape is a slightly irregular tetrahedron.
+ // Determine which simplex we are in.
+ // Offsets for second corner of simplex in (i,j,k)
+ int i1, j1, k1;
+
+ // coords
+ int i2, j2, k2; // Offsets for third corner of simplex in (i,j,k) coords
+
+ if (x0 >= y0)
+ {
+ if (y0 >= z0)
+ {
+ // X Y Z order
+ i1 = 1;
+ j1 = 0;
+ k1 = 0;
+ i2 = 1;
+ j2 = 1;
+ k2 = 0;
+ }
+ else if (x0 >= z0)
+ {
+ // X Z Y order
+ i1 = 1;
+ j1 = 0;
+ k1 = 0;
+ i2 = 1;
+ j2 = 0;
+ k2 = 1;
+ }
+ else
+ {
+ // Z X Y order
+ i1 = 0;
+ j1 = 0;
+ k1 = 1;
+ i2 = 1;
+ j2 = 0;
+ k2 = 1;
+ }
+ }
+ else
+ {
+ // x0 < y0
+ if (y0 < z0)
+ {
+ // Z Y X order
+ i1 = 0;
+ j1 = 0;
+ k1 = 1;
+ i2 = 0;
+ j2 = 1;
+ k2 = 1;
+ }
+ else if (x0 < z0)
+ {
+ // Y Z X order
+ i1 = 0;
+ j1 = 1;
+ k1 = 0;
+ i2 = 0;
+ j2 = 1;
+ k2 = 1;
+ }
+ else
+ {
+ // Y X Z order
+ i1 = 0;
+ j1 = 1;
+ k1 = 0;
+ i2 = 1;
+ j2 = 1;
+ k2 = 0;
+ }
+ }
+
+ // A step of (1,0,0) in (i,j,k) means a step of (1-c,-c,-c) in (x,y,z),
+ // a step of (0,1,0) in (i,j,k) means a step of (-c,1-c,-c) in (x,y,z),
+ // and
+ // a step of (0,0,1) in (i,j,k) means a step of (-c,-c,1-c) in (x,y,z),
+ // where c = 1/6.
+
+ // Offsets for second corner in (x,y,z) coords
+ double x1 = x0 - i1 + G3;
+ double y1 = y0 - j1 + G3;
+ double z1 = z0 - k1 + G3;
+
+ // Offsets for third corner in (x,y,z)
+ double x2 = x0 - i2 + F3;
+ double y2 = y0 - j2 + F3;
+ double z2 = z0 - k2 + F3;
+
+ // Offsets for last corner in (x,y,z)
+ double x3 = x0 - 0.5;
+ double y3 = y0 - 0.5;
+ double z3 = z0 - 0.5;
+
+ // Work out the hashed gradient indices of the four simplex corners
+ int ii = i & 0xff;
+ int jj = j & 0xff;
+ int kk = k & 0xff;
+
+ // Calculate the contribution from the four corners
+ double t0 = 0.6 - x0*x0 - y0*y0 - z0*z0;
+ if (t0 > 0)
+ {
+ t0 *= t0;
+ int gi0 = _random[ii + _random[jj + _random[kk]]]%12;
+ n0 = t0*t0*Dot(Grad3[gi0], x0, y0, z0);
+ }
+
+ double t1 = 0.6 - x1*x1 - y1*y1 - z1*z1;
+ if (t1 > 0)
+ {
+ t1 *= t1;
+ int gi1 = _random[ii + i1 + _random[jj + j1 + _random[kk + k1]]]%12;
+ n1 = t1*t1*Dot(Grad3[gi1], x1, y1, z1);
+ }
+
+ double t2 = 0.6 - x2*x2 - y2*y2 - z2*z2;
+ if (t2 > 0)
+ {
+ t2 *= t2;
+ int gi2 = _random[ii + i2 + _random[jj + j2 + _random[kk + k2]]]%12;
+ n2 = t2*t2*Dot(Grad3[gi2], x2, y2, z2);
+ }
+
+ double t3 = 0.6 - x3*x3 - y3*y3 - z3*z3;
+ if (t3 > 0)
+ {
+ t3 *= t3;
+ int gi3 = _random[ii + 1 + _random[jj + 1 + _random[kk + 1]]]%12;
+ n3 = t3*t3*Dot(Grad3[gi3], x3, y3, z3);
+ }
+
+ // Add contributions from each corner to get the final noise value.
+ // The result is scaled to stay just inside [-1,1]
+ return (float)(n0 + n1 + n2 + n3)*32;
+ }
+
+
+ void Randomize(int seed)
+ {
+ _random = new int[RandomSize * 2];
+
+ if (seed != 0)
+ {
+ // Shuffle the array using the given seed
+ // Unpack the seed into 4 bytes then perform a bitwise XOR operation
+ // with each byte
+ var F = new byte[4];
+ UnpackLittleUint32(seed, ref F);
+
+ for (int i = 0; i < Source.Length; i++)
+ {
+ _random[i] = Source[i] ^ F[0];
+ _random[i] ^= F[1];
+ _random[i] ^= F[2];
+ _random[i] ^= F[3];
+
+ _random[i + RandomSize] = _random[i];
+ }
+
+ }
+ else
+ {
+ for (int i = 0; i < RandomSize; i++)
+ _random[i + RandomSize] = _random[i] = Source[i];
+ }
+ }
+
+ static double Dot(int[] g, double x, double y, double z, double t)
+ {
+ return g[0] * x + g[1] * y + g[2] * z + g[3] * t;
+ }
+
+ static double Dot(int[] g, double x, double y, double z)
+ {
+ return g[0] * x + g[1] * y + g[2] * z;
+ }
+
+ static double Dot(int[] g, double x, double y)
+ {
+ return g[0] * x + g[1] * y;
+ }
+
+ static int FastFloor(double x)
+ {
+ return x >= 0 ? (int)x : (int)x - 1;
+ }
+
+ ///
+ /// Unpack the given integer (int32) to an array of 4 bytes in little endian format.
+ /// If the length of the buffer is too smal, it wil be resized.
+ ///
+ /// The value.
+ /// The output buffer.
+ static byte[] UnpackLittleUint32(int value, ref byte[] buffer)
+ {
+ if (buffer.Length < 4)
+ Array.Resize(ref buffer, 4);
+
+ buffer[0] = (byte)(value & 0x00ff);
+ buffer[1] = (byte)((value & 0xff00) >> 8);
+ buffer[2] = (byte)((value & 0x00ff0000) >> 16);
+ buffer[3] = (byte)((value & 0xff000000) >> 24);
+
+ return buffer;
+ }
+
+}
+