Skip to content

Latest commit

 

History

History
58 lines (50 loc) · 1.9 KB

Readme.md

File metadata and controls

58 lines (50 loc) · 1.9 KB

Optimal Knowledge Component Extracting Model for Knowledge-Concept Graph Completion in Education

This is the official implementations of OKCE: Optimal Knowledge Component Extracting Model for Knowledge-Concept Graph Completion in Education(IEEE Access, 2023). For technical details, please refer to:

Optimal Knowledge Component Extracting Model for Knowledge-Concept Graph Completion in Education [DOI]
Hyunhee Choi, Hayun Lee, Minjeong Lee

algorithm

(1) Setup

This code has been tested with Python 3.8, Pytorch 1.12, R 4.2.2, CUDA 11.2 and cuDNN 8.0 on Ubuntu 20.04.

  • Clone the repository
git clone https://github.com/LAIVDATA-EdTech-R-D/OKCE.git
  • Setup dependencies
conda create -n OKCE python=3.8
conda activate OKCE
deb https://cloud.r-project.org/bin/linux/ubuntu focal-cran40/
sudo apt-get update
sudo apt-get install r-base
cd OKCE
pip install -r requirements.txt

(2) KDD dataset

KDD dataset can be found here. Download the files named "bridge_to_algebra_2008_2009.zip". Unzip the folder and move it to /data.

  • data pre-processing
Rscript ./PGM/data_preprocessing.R

(3) Training

  • Optimal KC(Knowledge Concept) extracting
# python merge_main_nonFS.py --data_path=../data/algebra_ratio3000.csv --n_epochs=150
  • Optimal KC(Knowledge Concept) extracting with feature selection
python merge_main.py --data_path=../data/algebra_ratio3000.csv --n_epochs=150