Skip to content

Latest commit

 

History

History
76 lines (53 loc) · 2.94 KB

File metadata and controls

76 lines (53 loc) · 2.94 KB

Hierarchical Transformer (HIT)

This repository contains the source code for HIT (Hierarchical Transformer). It uses Fused Attention Mechanism (FAME) for learning representation learning from code-mixed texts. We evaluate HIT on code-mixed sequence classification, token classification and generative tasks.

HIT

We publish the datasets (publicly available) and the experimental setup used for different tasks.

Installation for experiments

$ pip install -r requirements.txt

Commands to run

Sentiment Analysis

$ cd experiments && python experiments_hindi_sentiment.py \
		--train_data ../data/hindi_sentiment/IIITH_Codemixed.txt \
		--model_save_path ../models/model_hindi_sentiment/

PoS (Parts-of-Speech) Tagging

$ cd experiments && python experiments_hindi_POS.py \
		--train_data '../data/POS Hindi English Code Mixed Tweets/POS Hindi English Code Mixed Tweets.tsv' \
		--model_save_path ../models/model_hindi_pos/

Named Entity Recognition (NER)

$ cd experiments && python experiments_hindi_NER.py\
		--train_data '../data/NER/NER Hindi English Code Mixed Tweets.tsv' \
		--model_save_path ../models/model_hindi_NER/

Machine Translation (MT)

$ cd experiments && python nmt.py \
		--data_path '../data/IITPatna-CodeMixedMT' \
		--model_save_path ../models/model_hindi_NMT/

Evaluation

For sentiment classification, PoS and NER classification we use macro precision, recall and F1 score to evaluate the models. For machine translation task we use BLEU, ROGUE-L and METEOR scores. To accommodate class imbalance we use weighted precision for hindi sentiment classification task.

$macro-precision = \sum_{i=1}^{C}pr_{i}$

$macro-recall = \sum_{i=1}^{C}re_{i}$

$macro-F1 = \sum_{i=1}^{C}\frac{2*pr_{i}*re_{i}}{(pr_{i} + re_{i})}$

$pr_{i}$ and $re_{i}$ are the precision and recall for class $i$, respectively.

The below table can be reproduced by using only the macro score.

Model Macro-Precision Macro-Recall Macro-F1
BiLSTM 0.894 0.901 0.909
HAN 0.889 0.906 0.905
CS-ELMO 0.901 0.903 0.909
ML-BERT 0.917 0.914 0.909
HIT 0.926 0.914 0.915

Citation

If you find this repo useful, please cite our paper:

@inproceedings{,
  author    = {Ayan Sengupta and
               Sourabh Kumar Bhattacharjee and
               Tanmoy Chakraborty and
               Md. Shad Akhtar},
  title     = {HIT: A Hierarchically Fused Deep Attention Network for Robust Code-mixed Language Representation},
  booktitle = {Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics},
  publisher = {Association for Computational Linguistics},
  year      = {2021},
  url       = {https://aclanthology.org/2021.findings-acl.407},
  doi       = {10.18653/v1/2021.findings-acl.407},
}