-
Notifications
You must be signed in to change notification settings - Fork 1
/
growthrate_gam.R
executable file
·409 lines (352 loc) · 14.3 KB
/
growthrate_gam.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
# Author: Brenden Tervo-Clemmens
# Packager: Will Foran
#' gam_growthrate
#'
#' https://people.maths.bris.ac.uk/~sw15190/mgcv/tampere/mgcv-advanced.pdf
#' https://stats.stackexchange.com/questions/190348/can-i-use-bootstrapping-to-estimate-the-uncertainty-in-a-maximum-value-of-a-gam
#' @description posterior simulation for confidence intervals of local slope/growth rate (deriv) of mgcv gam modeled variable (age) - random effects: intercepts only (not predicted)
#' @param m mgcv gam model object (only)
#' @param agevar variable for growth rate
#' @param idvar random effects/subject id variable, set to NULL if none
#' @param nnumber of iterations to run (quick)
#' @param qntquantiles to use for confidence interval
#' @importFrom MASS mvrnorm
#' @export
#' @examples
#' d <- read.csv("/Volumes/Phillips/R03_BehavioralBTC/data/btc_R03scoredmeasures_20190313.csv") %>%
#' group_by(id) %>%
#' mutate(visit=rank(d8))
#' f <- f1score ~ s(Ageatvisit) + s(visit) + s(id, bs="re")
#' m <- mgcv::gam(f, data=d)
#' ci <- gam_growthrate(m, 'Ageatvisit', 'id')
gam_growthrate <- function(m, agevar, idvar=NULL, n.iterations=10000, qnt=c(.025, .975)) {
simdiff <- sim_diff1_from_gam(m, agevar, idvar, n.iterations=n.iterations)
ci <- ci_from_simdiff1(simdiff$pred, simdiff$ages, qnt=qnt)
ci$fit <- simdiff$fit
return(ci)
}
#find vars in a formula surround by s(...), ignore s(...,bs="re")
# remove any additionaly columns provided as 2nd or more arguments
# probably agevar
#' find_covars_gam
#'
#' @description pull out covariests from mgcv model formula
#' @param fml formula to get covariates from
#' @param ... covariates to ignore (like agevar)
#' @export
#' @examples
#' fml <- y ~ s(x) + x2 + s(x3, bs="re") + x4
#' covars <- find_covars_gam(fml, x4) # x, x2
find_covars_gam <- function(fml, ...) {
ind <- as.character(fml)[3]
# s(x1) + x2 +s(x3,"re") -> x1, x2
vars <- unlist(strsplit(ind, "\\+")) # formula split by +
vars <- gsub(" ", "", vars) # remove spaces
vars <- gsub("\\w+\\((.*?)\\)", "\\1", vars) # remove surrounding s()
# remove random effect
no_re <- grep("re[\"']", vars, value=T, invert=T)
no_re <- gsub(",.*", "", no_re) # nothing after comma
# remove anything else (likely passed in agevar)
if (length(list(...)) != 0L) {
no_re <- no_re[ ! no_re %in% c(...)]
}
return(no_re)
}
sim_diff1_from_gam <- function(m, agevar, idvar=NULL,
n.iterations=10000, interval_inc=.1) {
v <- m$model[, agevar]
cond_list <- list(seq(min(v), max(v), by=interval_inc))
pp <- data.frame(a=cond_list[[1]], b=Inf)
# names should match what went into the model
names(pp) <- c(agevar, idvar)
# what if idvar is factor (Inf wont work)
if (is.null(idvar)) {
# do nothing. no idvar
} else if (is.factor(m$model[, idvar])){
# select idvar with the middle most random effect
# random effects are coefficents like s(idvar).xxxxx
# where xxxx is the index of the specific idvar factor name
idvarpatt <- sprintf("s\\(%s\\)", idvar)
idvarpatt. <- sprintf("s\\(%s\\).", idvar)
randeff <- m$coefficients[ grep(idvarpatt, names(m$coefficients)) ]
medval <- sort(randeff)[floor(length(randeff)/2)]
med_re_name <- names(which(randeff == medval))
median_idx <- gsub(idvarpatt., "", med_re_name)
median_subj <- levels(m$model[, idvar])[as.numeric(median_idx)]
warning("gam w/factor idvar, ",
"setting the middle most random effect subject: ",
median_subj)
pp[, 2] <- median_subj
# alternatively, select the first
# pp[, 2] <- m$model[1, idvar]
} else {
warning("predition with continous (non-factor) idvar will give 'Inf' fit")
# maybe pick middle value instead?
# pp[, 2] <- mean(m$model[, idvar], na.rm=T)
}
# for all covars, pick out the mean
for (cv in find_covars_gam(m$formula, agevar)) {
x <- m$model[, cv]
if (is.character(x) || is.factor(x) ){
warning("gam w/factor covar, setting all sim to the first!")
y <- x[1]
# TODO: maybe pracma::Mode ?
} else {
y <- mean(x, na.rm=T)
}
pp[, cv] <- y
}
Xp <- predict(m, pp, type="lpmatrix")
mu_beta <- coef(m)
sigma_Vb <- vcov(m)
# variance-covariance matrix of the main parameters fitted model
# used as: a positive-definite symmetric matrix specifying
# the covariance matrix of the variables.
# set.seed(10)
mrand <- MASS::mvrnorm(n.iterations, mu_beta, sigma_Vb)
# gamm$gam doesn't support 'family'
# class( mgcv::gamm(data=mtcars, cyl ~ mpg + s(wt) )$gam)
# [1] "gam"
# class( mgcv::gam(data=mtcars, cyl ~ mpg + s(wt) ))
# [1] "gam" "glm" "lm"
if("glm" %in% class(m)){
ilink <- family(m)$linkinv
} else {
ilink <- m$family$linkinv
}
# only want inetercept and agevar
keep_cols <- grep(paste0("Intercept|", agevar), dimnames(Xp)[[2]], value=T)
Xp_agevar <- Xp[, keep_cols]
mrand_agevar <- mrand[, keep_cols]
# generate a whole bunch of plausable values, get the diff
diffs <- lapply(seq_len(n.iterations), function(i) {
fit <- ilink(Xp_agevar %*% mrand_agevar[i, ])
dff <- c(NA, diff(fit))
return(dff)
})
return(list(pred=diffs, ages=pp[, 1], fit=predict(m, pp)))
}
ci_from_simdiff1 <- function(pred, ages, qnt=c(.025, .975)) {
names(pred) <- 1:length(pred)
mm <- t(dplyr::bind_rows(pred))
# this is the ouptut !
mean_dff <- apply(mm, 2, mean)
ci <- apply(mm, 2, quantile, qnt, na.rm=T)
colnames(ci) <- ages
out <- data.frame(mean_dff=mean_dff, ages=ages)
ci_out <- t(ci)
dimnames(ci_out)[[2]] <- c("ci_low", "ci_high")
return(cbind(out, ci_out))
# NEVER REACHED -- left as bad documentation
# old: return just ci and mean_dff
return(list(ci=ci, mean_dff=mean_dff))
# this is for fun
ages[which.min(ci[1, ])]
ages[which.min(ci[2, ])]
plot(ages, mean_dff)
for (i in 1:10) lines(ages, pred[[i]])
}
too_small <- function(x) abs(x) < 10^-15
clip_on_sig <- function(ci){
# if confidence interval includes zero
# signs of x and y will be different, -x * +y < 0
# or if both high and low are extremly close to zero
not_sig <- ci$ci_low * ci$ci_high < 0 |
(too_small(ci$ci_low) & too_small(ci$ci_high))
ci$mean_dff_clip <- ci$mean_dff
ci$mean_dff_clip[not_sig] <- 0
return(ci)
}
#' gam_maturation_point
#'
#' @description get maturation point from confidence interval dataframe
#' @param ci growthrate_gam output (confidence interval and derivitive)
#' @export
gam_maturation_point <- function(ci) {
# when ci bounds include 0 (different sign), no longer signficant
# clip out insignificant derivitive
if (is.na(ci$ci_low[1])) ci <- ci[-1, ]
# get mean_df_clip column
if (! "mean_dff_clip" %in% names(ci)) ci <- clip_on_sig(ci)
# find maturation point after the first signficant age
onset_sig <- ci$ages[ci$mean_dff_clip != 0]
maturation_pnt <- NA
if (length(onset_sig)>0L && !all(is.na(onset_sig))) {
mat_points_idx <- ci$mean_dff_clip==0 & ci$ages > onset_sig[1]
if (length(mat_points_idx) > 0L && any(mat_points_idx))
maturation_pnt <- min(ci$ages[mat_points_idx], na.rm=T)
}
return(maturation_pnt)
}
#' plot gam factor with deriv
#'
#' @description plot output of growthrate_gam and list for gam_growthrate_plot_combine
#' @param d dataframe model was built on (for actual points)
#' @param model gam model (for predicted line)
#' @param ci growthrate_gam output (confidence interval and derivitive)
#' @param agevar column name of age var e.g. 'Ageatvisit'
#' @param idvar line grouping var e.g., 'lunaid', set to NULL if no random effect in model
#' @param yvar model yvar e.g. 'f1score', default pulled from model formula
#' @param plotsavename PDF output name e.g. 'growth.pdf', not saved when NA, not ploted when NULL
#' @param xplotname 'Age'
#' @param yplotname 'f1score', default is yvar (model yvar)
#' @param draw_maturation T|F, show dotted line on first maturation point
#' @param draw_points T|F, show individual points as scatter plot over gam fit line
#' @param show_all_fill T|F, should we clip the raster fill to only significant ages?
#' @param ci_plot T|F, plot 95 percent confidence interval with geom_ribbon?
#' @export
#' @importFrom itsadug get_predictions
#' @examples
#' # no random effects
#' m <- mgcv::gam(f1score ~ s(Ageatvisit), data=d)
#' ci <- gam_growthrate(m, 'Ageatvisit')
#' gam_growthrate_plot(d, m, ci, 'Ageatvisit')
#'
#' # w/random effects 'id'
#' m <- mgcv::gam(f1score ~ s(Ageatvisit) + s(visit) + s(id, bs="re"), data=d)
#' ci <- gam_growthrate(m, 'Ageatvisit')
#' gam_growthrate_plot(d, m, ci, 'Ageatvisit', 'id')
#'
#' # replot example, see gam_growthrate_plot_combine
#' mod <- mgcv::gam(conc~s(uptake), data=CO2)
#' ci <- LNCDR::gam_growthrate(mod, 'uptake', n = 10000, qnt = c(0.025, 0.975))
#' plist <- gam_growthrate_plot(cars, mod, ci, 'uptake', xplotname='uptake')
#' plist$ageplot <- plist$ageplot + xlab('foobar')
#' gam_growthrate_plot_combine(plist$ageplot, plist$tile)
gam_growthrate_plot <-
function(d, model, ci, agevar, idvar=NULL,
yvar=as.character(model$formula[2]),
plotsavename=NA, xplotname="Age", yplotname=yvar,
draw_maturation=T, draw_points=T, show_all_fill=F,
ci_plot=T){
require(ggplot2)
require(itsadug)
# TODO:
# remove or replace first row mean_dff
# NA draws weird first color on spectrum
# make sure we have what we say we want
if (! "gam" %in% class(model) ) stop("model given must be a gam model!")
if (! "data.frame" %in% class(d) ) stop("d given must be a data.frame!")
if (! "data.frame" %in% class(ci) ) stop("ci is not growthrate_gam() output")
if (! yvar %in% names(model$model) ) stop(yvar, "not in model dataframe!")
ci$mean_dff_clip <- ci$mean_dff
# when ci bounds include 0 (different sign), no longer signficant
ci <- clip_on_sig(ci)
maturation_pnt <- gam_maturation_point(ci)
# warn about no matruation point
if (is.na(maturation_pnt) && draw_maturation) {
warning("No maturation point!")
draw_maturation <- F
}
# show even unsignficant change in raster if show_all_fill
fill_column <- ifelse(show_all_fill, "mean_dff", "mean_dff_clip")
## setup derivitive raster plot
deriv_range <- range(ci$mean_dff, na.rm=T)
tile <-
ggplot(ci[-1, ]) + # don't plot first row (is NA)
aes(x=ages, y=1, fill=!!sym(fill_column)) +
geom_raster(interpolate=TRUE) +
scale_fill_gradient2(
low = "blue", mid = "white", high = "red",
midpoint = 0,
space = "Lab",
breaks=sort(c(0, deriv_range)), # assumes range covers 0
limits=deriv_range
) +
xlab(sprintf("\n%s", xplotname))
# draw dotted line where maturation point is
if (draw_maturation)
tile <- tile +
geom_segment(
linetype=2, colour="black",
aes(x=maturation_pnt, xend=maturation_pnt, y=.5, yend=1.5))
# lunaize the figure
tile_luna <- lunaize_geomraster(tile) +
theme(text = element_text(size=36))
# predictions
modeldata<-data.frame(ydata=model$y, agevar=model$model[, agevar])
condlist <- list(a=ci$ages)
names(condlist) <- agevar
# 20190826 BTC - remove random effects (bug fix)
agepred <- itsadug::get_predictions(model, cond = condlist, rm.ranef=TRUE)
ageplot<-
ggplot(agepred) +
aes(x=!!sym(agevar), y=fit) +
# solid bold line for fitted model
geom_line(colour="black", linewidth=2) +
# label plot
ylab(yplotname) +
xlab(xplotname)
if (ci_plot) {
ageplot <- ageplot +
geom_ribbon(aes(ymin=fit - CI, ymax=fit + CI), alpha=.3)
}
# individual points for actual data
if (draw_points) ageplot <- ageplot +
geom_point(data=modeldata, aes(y=ydata, x=agevar), alpha=.2)
# add connecting lines if we have an idvar
if (!is.null(idvar) && draw_points)
ageplot <- ageplot +
geom_line(data=d, aes(y=!!sym(yvar), group=!!sym(idvar)), alpha=.2)
# lunaize main plot
ageplot_luna<-LNCDR::lunaize(ageplot)+
theme(text = element_text(size=36),
axis.title.x=element_blank(),
axis.text.x=element_blank())
# save to file if we have plotsavename
g <- gam_growthrate_plot_combine(ageplot_luna, tile_luna, plotsavename)
list_of_plots <- list(tile=tile_luna, ageplot=ageplot_luna, both=g)
# give back everything we created
return(list_of_plots)
}
#' combine age plot and tile slop heatmap into one figure (w/grob and grid)
#'
#' @description save two figures (only use if you need to mess with titles)
#' @export
#' @param ageplot_luna ggplot plot of subject coef by age (top part of figure)
#' @param tile_luna tile heatmap of slope (bottom part of figure)
#' @param PDFout PDF name to save output into, NA no saved, NULL not plotted
#' @examples
#' data <- data.frame(age=1:100,fd_mean=1:100,subj=as.factor(letters[1:25]), conn_ahpc_vmpfc=randu[1:100,1])
#' mod<-mgcv::gam(conn_ahpc_vmpfc~s(age)+s(fd_mean)+s(subj, bs="re"), data=data)
#' ci<-LNCDR::gam_growthrate(mod, 'age', n = 10000, qnt = c(0.025, 0.975), idvar='subj')
#' plist <- gam_growthrate_plot(data, mod, ci, 'age', idvar='subj')
#' plist$tile <- plist$tile + xlab('AGE')
#' g <- gam_growthrate_plot_combine(plist$ageplot, plist$tile, 'gammod.pdf')
gam_growthrate_plot_combine <- function(ageplot_luna, tile_luna, PDFout=NA) {
require(grid)
require(gridExtra)
tilegrob<- ggplotGrob(tile_luna)
agegrob <- ggplotGrob(ageplot_luna)
g<-rbind(agegrob, tilegrob, size="first")
panels <- g$layout$t[grep("panel", g$layout$name)]
g$heights[panels] <- unit(c(1, .1), "null")
# NULL is no draw
# NA is draw to screen
# filename is save to pdf
if (is.null(PDFout)){
return(g)
} else if (is.na(PDFout)) {
grid.draw(g)
} else {
# check we are saving pdf
ext <- rev(strsplit(PDFout, "\\.")[[1]])[1]
if (ext != "pdf") stop(PDFout, " must end in .pdf!")
# draw into pdf
pdf(PDFout, height = 9, width = 12)
grid.draw(g)
dev.off()
}
return(g)
}
lunaize_geomraster<-function(x){
x+
theme_bw()+
theme(
panel.grid.minor = element_blank(),
panel.grid.major = element_blank(),
axis.title.y = element_blank(),
axis.ticks.y = element_blank(),
axis.text.y = element_blank(),
legend.position = "none")
}