Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

attributeError: 'DCGAN' object has no attribute 'test_data_names' #31

Open
Freelancefangjian opened this issue May 17, 2019 · 7 comments

Comments

@Freelancefangjian
Copy link

No description provided.

@lzzlxxlsz
Copy link

hello.have you run the code successfully? and how about the test result?

@LeeDoYup
Copy link
Owner

LeeDoYup commented Jul 4, 2019

sorry for late comment. I think ther is no self.test_data_names in DCGAN class.
could you let me know your detail contexts of error?

@sachitha-bandara
Copy link

@LeeDoYup I have the same issue.

@LeeDoYup
Copy link
Owner

could you let me know which lines and what is the context of run?

@sachitha-bandara
Copy link

could you let me know which lines and what is the context of run?

I re-traced the problem back (I used try pass to avoid this issue) and below is the issue.

(tf) C:\Users\SCB\Desktop\FYP\AnoGAN-tf-master\AnoGAN-tf-master>python main.py --dataset DATASET_NAME --batch_size=58 --input_height=128 --input_width=128 --output_height=128 --output_width=128 --input_fname_pattern=".png" --crop --anomaly_test
{'anomaly_test': True,
'batch_size': 58,
'beta1': 0.5,
'checkpoint_dir': 'checkpoint',
'crop': True,
'dataset': 'DATASET_NAME',
'epoch': 25,
'generate_test_images': 100,
'input_fname_pattern': '
.png',
'input_height': 128,
'input_width': 128,
'learning_rate': 0.0002,
'output_height': 128,
'output_width': 128,
'sample_dir': 'samples',
'test_batch_size': 1,
'test_dir': 'test_data',
'test_epoch': 100,
'test_learning_rate': 0.001,
'test_result_dir': 'test_result',
'train': False,
'train_size': inf,
'visualize': False}
2020-03-16 19:53:49.704995: W c:\l\tensorflow_1501918863922\work\tensorflow-1.2.1\tensorflow\core\platform\cpu_feature_guard.cc:45] The TensorFlow library wasn't compiled to use SSE instructions, but these are available on your machine and could speed up CPU computations.
2020-03-16 19:53:49.705063: W c:\l\tensorflow_1501918863922\work\tensorflow-1.2.1\tensorflow\core\platform\cpu_feature_guard.cc:45] The TensorFlow library wasn't compiled to use SSE2 instructions, but these are available on your machine and could speed up CPU computations.
2020-03-16 19:53:49.705359: W c:\l\tensorflow_1501918863922\work\tensorflow-1.2.1\tensorflow\core\platform\cpu_feature_guard.cc:45] The TensorFlow library wasn't compiled to use SSE3 instructions, but these are available on your machine and could speed up CPU computations.
2020-03-16 19:53:49.705769: W c:\l\tensorflow_1501918863922\work\tensorflow-1.2.1\tensorflow\core\platform\cpu_feature_guard.cc:45] The TensorFlow library wasn't compiled to use SSE4.1 instructions, but these are available on your machine and could speed up CPU computations.
2020-03-16 19:53:49.706040: W c:\l\tensorflow_1501918863922\work\tensorflow-1.2.1\tensorflow\core\platform\cpu_feature_guard.cc:45] The TensorFlow library wasn't compiled to use SSE4.2 instructions, but these are available on your machine and could speed up CPU computations.
2020-03-16 19:53:49.706359: W c:\l\tensorflow_1501918863922\work\tensorflow-1.2.1\tensorflow\core\platform\cpu_feature_guard.cc:45] The TensorFlow library wasn't compiled to use AVX instructions, but these are available on your machine and could speed up CPU computations.
2020-03-16 19:53:49.706674: W c:\l\tensorflow_1501918863922\work\tensorflow-1.2.1\tensorflow\core\platform\cpu_feature_guard.cc:45] The TensorFlow library wasn't compiled to use AVX2 instructions, but these are available on your machine and could speed up CPU computations.
2020-03-16 19:53:49.706968: W c:\l\tensorflow_1501918863922\work\tensorflow-1.2.1\tensorflow\core\platform\cpu_feature_guard.cc:45] The TensorFlow library wasn't compiled to use FMA instructions, but these are available on your machine and could speed up CPU computations.

Variables: name (type shape) [size]

generator/g_h0_lin/Matrix:0 (float32_ref 100x32768) [3276800, bytes: 13107200]
generator/g_h0_lin/bias:0 (float32_ref 32768) [32768, bytes: 131072]
generator/g_bn0/beta:0 (float32_ref 512) [512, bytes: 2048]
generator/g_bn0/gamma:0 (float32_ref 512) [512, bytes: 2048]
generator/g_h1/w:0 (float32_ref 5x5x256x512) [3276800, bytes: 13107200]
generator/g_h1/biases:0 (float32_ref 256) [256, bytes: 1024]
generator/g_bn1/beta:0 (float32_ref 256) [256, bytes: 1024]
generator/g_bn1/gamma:0 (float32_ref 256) [256, bytes: 1024]
generator/g_h2/w:0 (float32_ref 5x5x128x256) [819200, bytes: 3276800]
generator/g_h2/biases:0 (float32_ref 128) [128, bytes: 512]
generator/g_bn2/beta:0 (float32_ref 128) [128, bytes: 512]
generator/g_bn2/gamma:0 (float32_ref 128) [128, bytes: 512]
generator/g_h3/w:0 (float32_ref 5x5x64x128) [204800, bytes: 819200]
generator/g_h3/biases:0 (float32_ref 64) [64, bytes: 256]
generator/g_bn3/beta:0 (float32_ref 64) [64, bytes: 256]
generator/g_bn3/gamma:0 (float32_ref 64) [64, bytes: 256]
generator/g_h4/w:0 (float32_ref 5x5x3x64) [4800, bytes: 19200]
generator/g_h4/biases:0 (float32_ref 3) [3, bytes: 12]
discriminator/d_h0_conv/w:0 (float32_ref 5x5x3x64) [4800, bytes: 19200]
discriminator/d_h0_conv/biases:0 (float32_ref 64) [64, bytes: 256]
discriminator/d_h1_conv/w:0 (float32_ref 5x5x64x128) [204800, bytes: 819200]
discriminator/d_h1_conv/biases:0 (float32_ref 128) [128, bytes: 512]
discriminator/d_bn1/beta:0 (float32_ref 128) [128, bytes: 512]
discriminator/d_bn1/gamma:0 (float32_ref 128) [128, bytes: 512]
discriminator/d_h2_conv/w:0 (float32_ref 5x5x128x256) [819200, bytes: 3276800]
discriminator/d_h2_conv/biases:0 (float32_ref 256) [256, bytes: 1024]
discriminator/d_bn2/beta:0 (float32_ref 256) [256, bytes: 1024]
discriminator/d_bn2/gamma:0 (float32_ref 256) [256, bytes: 1024]
discriminator/d_h3_conv/w:0 (float32_ref 5x5x256x512) [3276800, bytes: 13107200]
discriminator/d_h3_conv/biases:0 (float32_ref 512) [512, bytes: 2048]
discriminator/d_bn3/beta:0 (float32_ref 512) [512, bytes: 2048]
discriminator/d_bn3/gamma:0 (float32_ref 512) [512, bytes: 2048]
discriminator/d_h4_lin/Matrix:0 (float32_ref 32768x1) [32768, bytes: 131072]
discriminator/d_h4_lin/bias:0 (float32_ref 1) [1, bytes: 4]
Total size of variables: 11958660
Total bytes of variables: 47834640
[] Reading checkpoints...
[
] Success to read DCGAN.model-2
the shitty thumb file
Bypassing none type
........
Traceback (most recent call last):
File "main.py", line 128, in
tf.app.run()
File "C:\Program Files\Anaconda3\envs\tf\lib\site-packages\tensorflow\python\platform\app.py", line 48, in run
_sys.exit(main(_sys.argv[:1] + flags_passthrough))
File "main.py", line 112, in main
dcgan.anomaly_detector()
File "C:\Users\SCB\Desktop\FYP\AnoGAN-tf-master\AnoGAN-tf-master\model.py", line 464, in anomaly_detector
self.get_test_data()
File "C:\Users\SCB\Desktop\FYP\AnoGAN-tf-master\AnoGAN-tf-master\model.py", line 453, in get_test_data
batch_images = np.array(batch).astype(np.float32)
ValueError: setting an array element with a sequence.

If i used a try-pass method in here also, I get the attribute error at DCGAN class

@sachitha-bandara
Copy link

@LeeDoYup the reason i used try-pass is because the windows system automatically creates thumb.db files and errors happen when trying to read them as images. I tried removing them from cmd, but i guess the db files are created at runtime. so i had to bypass reading the db files. I have no previous experience with tensorflow

@sachitha-bandara
Copy link

The error is fixed. it is due to thumb.db files created at runtime in win 10.

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

No branches or pull requests

4 participants