Data | Description | Download |
---|---|---|
Visual Genome | ln -s VG/images data/vg/images |
Official |
MSCOCO 2014 | ln -s coco2014/images data/refcoco/images |
Official |
MSCOCO 2017 | ln -s coco2017/val2017 data/coco2017/images |
Official |
EVA CLIP text encoder | mv <your_path>/ckpts/eva_clip_psz14.pt ckpts/ |
Official |
Converted annotations | unzip data.zip |
OneDrive |
Meteor package | unzip meteor.zip -d dynrefer/common/evaluation/ |
OneDrive |
Pre-trained DynRefer weights and logs (Optional) | mv <your_path>/ckpts/* ckpts/ |
OneDrive |
To train and evaluate DynRefer, download the files in the table and arrange the files according to the file tree below.
|--DynRefer/
|--data/
|--vg/
|--dynrefer/
|--images/
|--1000.jpg
|--1001.jpg
...
|--refcoco
|--dynrefer/
|--images/
|--COCO_train2014_000000000009.jpg
|--COCO_train2014_000000000025.jpg
...
|--coco2017
|--dynrefer/
|--images/
|--000000116207.jpg
|--000000116208.jpg
...
|--ckpts/
|--eva_clip_psz14.pt
|--vg1.2_5e.pth
|--refcocog_ft.pth
|--configs/
|--dynrefer/
|--docs/
|--scripts/
|--train.py
|--eval.py