https://leetcode.com/problems/kth-smallest-element-in-a-bst/description/
Given a binary search tree, write a function kthSmallest to find the kth smallest element in it.
Note:
You may assume k is always valid, 1 ≤ k ≤ BST's total elements.
Example 1:
Input: root = [3,1,4,null,2], k = 1
3
/ \
1 4
\
2
Output: 1
Example 2:
Input: root = [5,3,6,2,4,null,null,1], k = 3
5
/ \
3 6
/ \
2 4
/
1
Output: 3
Follow up:
What if the BST is modified (insert/delete operations) often and you need to find the kth smallest frequently? How would you optimize the kthSmallest routine?
- 中序遍历
- 阿里
- 腾讯
- 百度
- 字节
解法一:
由于‘中序遍历一个二叉查找树(BST)的结果是一个有序数组’ ,因此我们只需要在遍历到第k个,返回当前元素即可。 中序遍历相关思路请查看binary-tree-traversal
解法二:
联想到二叉搜索树的性质,root 大于左子树,小于右子树,如果左子树的节点数目等于 K-1,那么 root 就是结果,否则如果左子树节点数目小于 K-1,那么结果必然在右子树,否则就在左子树。 因此在搜索的时候同时返回节点数目,跟 K 做对比,就能得出结果了。
- 中序遍历
解法一:
JavaScript Code:
/*
* @lc app=leetcode id=230 lang=javascript
*
* [230] Kth Smallest Element in a BST
*/
/**
* Definition for a binary tree node.
* function TreeNode(val) {
* this.val = val;
* this.left = this.right = null;
* }
*/
/**
* @param {TreeNode} root
* @param {number} k
* @return {number}
*/
var kthSmallest = function(root, k) {
const stack = [root];
let cur = root;
let i = 0;
function insertAllLefts(cur) {
while(cur && cur.left) {
const l = cur.left;
stack.push(l);
cur = l;
}
}
insertAllLefts(cur);
while(cur = stack.pop()) {
i++;
if (i === k) return cur.val;
const r = cur.right;
if (r) {
stack.push(r);
insertAllLefts(r);
}
}
return -1;
};
Java Code:
/**
* Definition for a binary tree node.
* public class TreeNode {
* int val;
* TreeNode left;
* TreeNode right;
* TreeNode(int x) { val = x; }
* }
*/
private int count = 1;
private int res;
public int KthSmallest (TreeNode root, int k) {
inorder(root, k);
return res;
}
public void inorder (TreeNode root, int k) {
if (root == null) return;
inorder(root.left, k);
if (count++ == k) {
res = root.val;
return;
}
inorder(root.right, k);
}
解法二:
JavaScript Code:
/**
* Definition for a binary tree node.
* function TreeNode(val) {
* this.val = val;
* this.left = this.right = null;
* }
*/
function nodeCount(node) {
if (node === null) return 0;
const l = nodeCount(node.left);
const r = nodeCount(node.right);
return 1 + l + r;
}
/**
* @param {TreeNode} root
* @param {number} k
* @return {number}
*/
var kthSmallest = function(root, k) {
const c = nodeCount(root.left);
if (c === k - 1) return root.val;
else if (c < k - 1) return kthSmallest(root.right, k - c - 1);
return kthSmallest(root.left, k)
};
这道题有一个follow up:
What if the BST is modified (insert/delete operations) often and you need to find the kth smallest frequently? How would you optimize the kthSmallest routine?
大家可以思考一下。