-
Notifications
You must be signed in to change notification settings - Fork 3
/
common.py
263 lines (214 loc) · 10.2 KB
/
common.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
#
# SPDX-FileCopyrightText: Copyright (c) 1993-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
import argparse
import os
import ctypes
from typing import Optional, List
import numpy as np
import tensorrt as trt
from cuda import cuda, cudart
try:
# Sometimes python does not understand FileNotFoundError
FileNotFoundError
except NameError:
FileNotFoundError = IOError
EXPLICIT_BATCH = 1 << (int)(trt.NetworkDefinitionCreationFlag.EXPLICIT_BATCH)
def check_cuda_err(err):
if isinstance(err, cuda.CUresult):
if err != cuda.CUresult.CUDA_SUCCESS:
raise RuntimeError("Cuda Error: {}".format(err))
if isinstance(err, cudart.cudaError_t):
if err != cudart.cudaError_t.cudaSuccess:
raise RuntimeError("Cuda Runtime Error: {}".format(err))
else:
raise RuntimeError("Unknown error type: {}".format(err))
def cuda_call(call):
err, res = call[0], call[1:]
check_cuda_err(err)
if len(res) == 1:
res = res[0]
return res
def GiB(val):
return val * 1 << 30
def add_help(description):
parser = argparse.ArgumentParser(description=description, formatter_class=argparse.ArgumentDefaultsHelpFormatter)
args, _ = parser.parse_known_args()
def find_sample_data(description="Runs a TensorRT Python sample", subfolder="", find_files=[], err_msg=""):
"""
Parses sample arguments.
Args:
description (str): Description of the sample.
subfolder (str): The subfolder containing data relevant to this sample
find_files (str): A list of filenames to find. Each filename will be replaced with an absolute path.
Returns:
str: Path of data directory.
"""
# Standard command-line arguments for all samples.
kDEFAULT_DATA_ROOT = os.path.join(os.sep, "usr", "src", "tensorrt", "data")
parser = argparse.ArgumentParser(description=description, formatter_class=argparse.ArgumentDefaultsHelpFormatter)
parser.add_argument(
"-d",
"--datadir",
help="Location of the TensorRT sample data directory, and any additional data directories.",
action="append",
default=[kDEFAULT_DATA_ROOT],
)
args, _ = parser.parse_known_args()
def get_data_path(data_dir):
# If the subfolder exists, append it to the path, otherwise use the provided path as-is.
data_path = os.path.join(data_dir, subfolder)
if not os.path.exists(data_path):
if data_dir != kDEFAULT_DATA_ROOT:
print("WARNING: " + data_path + " does not exist. Trying " + data_dir + " instead.")
data_path = data_dir
# Make sure data directory exists.
if not (os.path.exists(data_path)) and data_dir != kDEFAULT_DATA_ROOT:
print(
"WARNING: {:} does not exist. Please provide the correct data path with the -d option.".format(
data_path
)
)
return data_path
data_paths = [get_data_path(data_dir) for data_dir in args.datadir]
return data_paths, locate_files(data_paths, find_files, err_msg)
def locate_files(data_paths, filenames, err_msg=""):
"""
Locates the specified files in the specified data directories.
If a file exists in multiple data directories, the first directory is used.
Args:
data_paths (List[str]): The data directories.
filename (List[str]): The names of the files to find.
Returns:
List[str]: The absolute paths of the files.
Raises:
FileNotFoundError if a file could not be located.
"""
found_files = [None] * len(filenames)
for data_path in data_paths:
# Find all requested files.
for index, (found, filename) in enumerate(zip(found_files, filenames)):
if not found:
file_path = os.path.abspath(os.path.join(data_path, filename))
if os.path.exists(file_path):
found_files[index] = file_path
# Check that all files were found
for f, filename in zip(found_files, filenames):
if not f or not os.path.exists(f):
raise FileNotFoundError(
"Could not find {:}. Searched in data paths: {:}\n{:}".format(filename, data_paths, err_msg)
)
return found_files
class HostDeviceMem:
"""Pair of host and device memory, where the host memory is wrapped in a numpy array"""
def __init__(self, size: int, dtype: np.dtype):
nbytes = size * dtype.itemsize
host_mem = cuda_call(cudart.cudaMallocHost(nbytes))
pointer_type = ctypes.POINTER(np.ctypeslib.as_ctypes_type(dtype))
self._host = np.ctypeslib.as_array(ctypes.cast(host_mem, pointer_type), (size,))
self._device = cuda_call(cudart.cudaMalloc(nbytes))
self._nbytes = nbytes
@property
def host(self) -> np.ndarray:
return self._host
@host.setter
def host(self, arr: np.ndarray):
if arr.size > self.host.size:
raise ValueError(
f"Tried to fit an array of size {arr.size} into host memory of size {self.host.size}"
)
np.copyto(self.host[:arr.size], arr.flat, casting='safe')
@property
def device(self) -> int:
return self._device
@property
def nbytes(self) -> int:
return self._nbytes
def __str__(self):
return f"Host:\n{self.host}\nDevice:\n{self.device}\nSize:\n{self.nbytes}\n"
def __repr__(self):
return self.__str__()
def free(self):
cuda_call(cudart.cudaFree(self.device))
cuda_call(cudart.cudaFreeHost(self.host.ctypes.data))
# Allocates all buffers required for an engine, i.e. host/device inputs/outputs.
# If engine uses dynamic shapes, specify a profile to find the maximum input & output size.
def allocate_buffers(engine: trt.ICudaEngine, profile_idx: Optional[int] = None):
inputs = []
outputs = []
bindings = []
stream = cuda_call(cudart.cudaStreamCreate())
tensor_names = [engine.get_tensor_name(i) for i in range(engine.num_io_tensors)]
for binding in tensor_names:
# get_tensor_profile_shape returns (min_shape, optimal_shape, max_shape)
# Pick out the max shape to allocate enough memory for the binding.
shape = engine.get_tensor_shape(binding) if profile_idx is None else engine.get_tensor_profile_shape(binding, profile_idx)[-1]
shape_valid = np.all([s >= 0 for s in shape])
if not shape_valid and profile_idx is None:
raise ValueError(f"Binding {binding} has dynamic shape, " +\
"but no profile was specified.")
size = trt.volume(shape)
if engine.has_implicit_batch_dimension:
size *= engine.max_batch_size
dtype = np.dtype(trt.nptype(engine.get_tensor_dtype(binding)))
# Allocate host and device buffers
bindingMemory = HostDeviceMem(size, dtype)
# Append the device buffer to device bindings.
bindings.append(int(bindingMemory.device))
# Append to the appropriate list.
if engine.get_tensor_mode(binding) == trt.TensorIOMode.INPUT:
inputs.append(bindingMemory)
else:
outputs.append(bindingMemory)
return inputs, outputs, bindings, stream
# Frees the resources allocated in allocate_buffers
def free_buffers(inputs: List[HostDeviceMem], outputs: List[HostDeviceMem], stream: cudart.cudaStream_t):
for mem in inputs + outputs:
mem.free()
cuda_call(cudart.cudaStreamDestroy(stream))
# Wrapper for cudaMemcpy which infers copy size and does error checking
def memcpy_host_to_device(device_ptr: int, host_arr: np.ndarray):
nbytes = host_arr.size * host_arr.itemsize
cuda_call(cudart.cudaMemcpy(device_ptr, host_arr, nbytes, cudart.cudaMemcpyKind.cudaMemcpyHostToDevice))
# Wrapper for cudaMemcpy which infers copy size and does error checking
def memcpy_device_to_host(host_arr: np.ndarray, device_ptr: int):
nbytes = host_arr.size * host_arr.itemsize
cuda_call(cudart.cudaMemcpy(host_arr, device_ptr, nbytes, cudart.cudaMemcpyKind.cudaMemcpyDeviceToHost))
def _do_inference_base(inputs, outputs, stream, execute_async):
# Transfer input data to the GPU.
kind = cudart.cudaMemcpyKind.cudaMemcpyHostToDevice
[cuda_call(cudart.cudaMemcpyAsync(inp.device, inp.host, inp.nbytes, kind, stream)) for inp in inputs]
# Run inference.
execute_async()
# Transfer predictions back from the GPU.
kind = cudart.cudaMemcpyKind.cudaMemcpyDeviceToHost
[cuda_call(cudart.cudaMemcpyAsync(out.host, out.device, out.nbytes, kind, stream)) for out in outputs]
# Synchronize the stream
cuda_call(cudart.cudaStreamSynchronize(stream))
# Return only the host outputs.
return [out.host for out in outputs]
# This function is generalized for multiple inputs/outputs.
# inputs and outputs are expected to be lists of HostDeviceMem objects.
def do_inference(context, bindings, inputs, outputs, stream, batch_size=1):
def execute_async():
context.execute_async(batch_size=batch_size, bindings=bindings, stream_handle=stream)
return _do_inference_base(inputs, outputs, stream, execute_async)
# This function is generalized for multiple inputs/outputs for full dimension networks.
# inputs and outputs are expected to be lists of HostDeviceMem objects.
def do_inference_v2(context, bindings, inputs, outputs, stream):
def execute_async():
context.execute_async_v2(bindings=bindings, stream_handle=stream)
return _do_inference_base(inputs, outputs, stream, execute_async)