-
Notifications
You must be signed in to change notification settings - Fork 0
/
parse.py
31 lines (24 loc) · 1.44 KB
/
parse.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
from langchain_ollama import OllamaLLM
from langchain_core.prompts import ChatPromptTemplate
template = (
"You are tasked with extracting specific information from the following text content: {dom_content}. "
"Please follow these instructions carefully: \n\n"
"1. **Extract Information:** Only extract the information that directly matches the provided description: {parse_description}. "
"2. **No Extra Content:** Do not include any additional text, comments, or explanations in your response. "
"3. **Empty Response:** If no information matches the description, return an empty string ('')."
"4. **Direct Data Only:** Your output should contain only the data that is explicitly requested, with no other text."
)
model = OllamaLLM(model="llama3")
def parse_with_ollama(dom_chunks, parse_description):
"""Creates a chain of LLM prompts to parse the DOM content and extract the specified information."""
prompt = ChatPromptTemplate.from_template(template)
chain = prompt | model # go to chain then call Ollama LLM
parsed_results = []
# Process each chunk of DOM content separately and concatenate the results together.
for i, chunk in enumerate(dom_chunks, start=1):
response = chain.invoke(
{"dom_content": chunk, "parse_description": parse_description}
)
print(f"Parsed batch: {i} of {len(dom_chunks)}")
parsed_results.append(response)
return "\n".join(parsed_results)