-
Notifications
You must be signed in to change notification settings - Fork 22
/
triangle.py
489 lines (413 loc) · 17 KB
/
triangle.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
# -*- coding: utf-8 -*-
from __future__ import print_function, absolute_import, unicode_literals
__all__ = ["corner", "hist2d"]
__version__ = "0.2.0"
__author__ = "Dan Foreman-Mackey ([email protected])"
__copyright__ = "Copyright 2013 Daniel Foreman-Mackey"
__contributors__ = [
# Alphabetical by first name.
"Adrian Price-Whelan @adrn",
"Brendon Brewer @eggplantbren",
"Ekta Patel @ekta1224",
"Emily Rice @emilurice",
"Geoff Ryan @geoffryan",
"Guillaume @ceyzeriat",
"Kelle Cruz @kelle",
"Kyle Barbary @kbarbary",
"Marco Tazzari @mtazzari",
"Phil Marshall @drphilmarshall",
"Pierre Gratier @pirg",
"Stephan Hoyer @shoyer",
"Will Vousden @willvousden",
"Wolfgang Kerzendorf @wkerzendorf",
]
import logging
import numpy as np
import matplotlib.pyplot as pl
from matplotlib.ticker import MaxNLocator
from matplotlib.colors import LinearSegmentedColormap, colorConverter
try:
from scipy.ndimage import gaussian_filter
except ImportError:
gaussian_filter = None
def corner(xs, bins=20, range=None, weights=None, color="k",
smooth=None, smooth1d=None,
labels=None, label_kwargs=None,
show_titles=False, title_fmt=".2f", title_kwargs=None,
truths=None, truth_color="#4682b4",
scale_hist=False, quantiles=None, verbose=False, fig=None,
max_n_ticks=5, top_ticks=False, hist_kwargs=None, **hist2d_kwargs):
"""
Make a *sick* corner plot showing the projections of a data set in a
multi-dimensional space. kwargs are passed to hist2d() or used for
`matplotlib` styling.
Parameters
----------
xs : array_like (nsamples, ndim)
The samples. This should be a 1- or 2-dimensional array. For a 1-D
array this results in a simple histogram. For a 2-D array, the zeroth
axis is the list of samples and the next axis are the dimensions of
the space.
weights : array_like (nsamples,)
The weight of each sample. If `None` (default), samples are given
equal weight.
labels : iterable (ndim,) (optional)
A list of names for the dimensions. If a ``xs`` is a
``pandas.DataFrame``, labels will default to column names.
show_titles : bool (optional)
Displays a title above each 1-D histogram showing the 0.5 quantile
with the upper and lower errors supplied by the quantiles argument.
title_fmt : string (optional)
The format string for the quantiles given in titles.
(default: `.2f`)
title_args : dict (optional)
Any extra keyword arguments to send to the `add_title` command.
extents : iterable (ndim,) (optional)
A list where each element is either a length 2 tuple containing
lower and upper bounds (extents) or a float in range (0., 1.)
giving the fraction of samples to include in bounds, e.g.,
[(0.,10.), (1.,5), 0.999, etc.].
If a fraction, the bounds are chosen to be equal-tailed.
truths : iterable (ndim,) (optional)
A list of reference values to indicate on the plots.
truth_color : str (optional)
A ``matplotlib`` style color for the ``truths`` makers.
scale_hist : bool (optional)
Should the 1-D histograms be scaled in such a way that the zero line
is visible?
quantiles : iterable (optional)
A list of fractional quantiles to show on the 1-D histograms as
vertical dashed lines.
verbose : bool (optional)
If true, print the values of the computed quantiles.
plot_contours : bool (optional)
Draw contours for dense regions of the plot.
plot_datapoints : bool (optional)
Draw the individual data points.
max_n_ticks: int (optional)
maximum number of ticks to try to use
fig : matplotlib.Figure (optional)
Overplot onto the provided figure object.
"""
if quantiles is None:
quantiles = []
if title_kwargs is None:
title_kwargs = dict()
if label_kwargs is None:
label_kwargs = dict()
# Try filling in labels from pandas.DataFrame columns.
if labels is None:
try:
labels = xs.columns
except AttributeError:
pass
# Deal with 1D sample lists.
xs = np.atleast_1d(xs)
if len(xs.shape) == 1:
xs = np.atleast_2d(xs)
else:
assert len(xs.shape) == 2, "The input sample array must be 1- or 2-D."
xs = xs.T
assert xs.shape[0] <= xs.shape[1], "I don't believe that you want more " \
"dimensions than samples!"
# Parse the weight array.
if weights is not None:
weights = np.asarray(weights)
if weights.ndim != 1:
raise ValueError("Weights must be 1-D")
if xs.shape[1] != weights.shape[0]:
raise ValueError("Lengths of weights must match number of samples")
# Parse the parameter ranges.
if range is None:
if "extents" in hist2d_kwargs:
logging.warn("Deprecated keyword argument 'extents'. "
"Use 'range' instead.")
range = hist2d_kwargs.pop("extents")
else:
range = [[x.min(), x.max()] for x in xs]
# Check for parameters that never change.
m = np.array([e[0] == e[1] for e in range], dtype=bool)
if np.any(m):
raise ValueError(("It looks like the parameter(s) in "
"column(s) {0} have no dynamic range. "
"Please provide a `range` argument.")
.format(", ".join(map(
"{0}".format, np.arange(len(m))[m]))))
else:
# If any of the extents are percentiles, convert them to ranges.
for i, _ in enumerate(range):
try:
emin, emax = range[i]
except TypeError:
q = [0.5 - 0.5*range[i], 0.5 + 0.5*range[i]]
range[i] = quantile(xs[i], q, weights=weights)
if len(range) != xs.shape[0]:
raise ValueError("Dimension mismatch between samples and range")
# Parse the bin specifications.
try:
bins = [float(bins) for _ in range]
except TypeError:
if len(bins) != len(range):
raise ValueError("Dimension mismatch between bins and range")
# Some magic numbers for pretty axis layout.
K = len(xs)
factor = 2.0 # size of one side of one panel
lbdim = 0.5 * factor # size of left/bottom margin
trdim = 0.2 * factor # size of top/right margin
whspace = 0.05 # w/hspace size
plotdim = factor * K + factor * (K - 1.) * whspace
dim = lbdim + plotdim + trdim
# Create a new figure if one wasn't provided.
if fig is None:
fig, axes = pl.subplots(K, K, figsize=(dim, dim), tight_layout=False)
else:
try:
axes = np.array(fig.axes).reshape((K, K))
except:
raise ValueError("Provided figure has {0} axes, but data has "
"dimensions K={1}".format(len(fig.axes), K))
fig.set_tight_layout(False)
# Format the figure.
lb = lbdim / dim
tr = (lbdim + plotdim) / dim
fig.subplots_adjust(left=lb, bottom=lb, right=tr, top=tr,
wspace=whspace, hspace=whspace)
# Set up the default histogram keywords.
if hist_kwargs is None:
hist_kwargs = dict()
hist_kwargs["color"] = hist_kwargs.get("color", color)
if smooth1d is None:
hist_kwargs["histtype"] = hist_kwargs.get("histtype", "step")
for i, x in enumerate(xs):
# Deal with masked arrays.
if hasattr(x, "compressed"):
x = x.compressed()
if np.shape(xs)[0] == 1:
ax = axes
else:
ax = axes[i, i]
# Plot the histograms.
if smooth1d is None:
n, _, _ = ax.hist(x, bins=bins[i], weights=weights,
range=range[i], **hist_kwargs)
else:
if gaussian_filter is None:
raise ImportError("Please install scipy for smoothing")
n, b = np.histogram(x, bins=bins[i], weights=weights,
range=range[i])
n = gaussian_filter(n, smooth1d)
x0 = np.array(zip(b[:-1], b[1:])).flatten()
y0 = np.array(zip(n, n)).flatten()
ax.plot(x0, y0, **hist_kwargs)
if truths is not None:
ax.axvline(truths[i], color=truth_color)
# Plot quantiles if wanted.
if len(quantiles) > 0:
qvalues = quantile(x, quantiles, weights=weights)
for q in qvalues:
ax.axvline(q, ls="dashed", color=color)
if verbose:
print("Quantiles:")
print([item for item in zip(quantiles, qvalues)])
if show_titles:
# Compute the quantiles for the title. This might redo
# unneeded computation but who cares.
q_16, q_50, q_84 = quantile(x, [0.16, 0.5, 0.84], weights=weights)
q_m, q_p = q_50-q_16, q_84-q_50
# Format the quantile display.
fmt = "{{0:{0}}}".format(title_fmt).format
title = r"${{{0}}}_{{-{1}}}^{{+{2}}}$"
title = title.format(fmt(q_50), fmt(q_m), fmt(q_p))
# Add in the column name if it's given.
if labels is not None:
title = "{0} = {1}".format(labels[i], title)
# Add the title to the axis.
ax.set_title(title, **title_kwargs)
# Set up the axes.
ax.set_xlim(range[i])
if scale_hist:
maxn = np.max(n)
ax.set_ylim(-0.1 * maxn, 1.1 * maxn)
else:
ax.set_ylim(0, 1.1 * np.max(n))
ax.set_yticklabels([])
ax.xaxis.set_major_locator(MaxNLocator(max_n_ticks, prune="lower"))
if i < K - 1:
if top_ticks:
ax.xaxis.set_ticks_position("top")
[l.set_rotation(45) for l in ax.get_xticklabels()]
else:
ax.set_xticklabels([])
else:
[l.set_rotation(45) for l in ax.get_xticklabels()]
if labels is not None:
ax.set_xlabel(labels[i], **label_kwargs)
ax.xaxis.set_label_coords(0.5, -0.3)
for j, y in enumerate(xs):
if np.shape(xs)[0] == 1:
ax = axes
else:
ax = axes[i, j]
if j > i:
ax.set_visible(False)
ax.set_frame_on(False)
continue
elif j == i:
continue
# Deal with masked arrays.
if hasattr(y, "compressed"):
y = y.compressed()
hist2d(y, x, ax=ax, range=[range[j], range[i]], weights=weights,
color=color, smooth=smooth, **hist2d_kwargs)
if truths is not None:
ax.plot(truths[j], truths[i], "s", color=truth_color)
ax.axvline(truths[j], color=truth_color)
ax.axhline(truths[i], color=truth_color)
ax.xaxis.set_major_locator(MaxNLocator(max_n_ticks, prune="lower"))
ax.yaxis.set_major_locator(MaxNLocator(max_n_ticks, prune="lower"))
if i < K - 1:
ax.set_xticklabels([])
else:
[l.set_rotation(45) for l in ax.get_xticklabels()]
if labels is not None:
ax.set_xlabel(labels[j], **label_kwargs)
ax.xaxis.set_label_coords(0.5, -0.3)
if j > 0:
ax.set_yticklabels([])
else:
[l.set_rotation(45) for l in ax.get_yticklabels()]
if labels is not None:
ax.set_ylabel(labels[i], **label_kwargs)
ax.yaxis.set_label_coords(-0.3, 0.5)
return fig
def quantile(x, q, weights=None):
"""
Like numpy.percentile, but:
* Values of q are quantiles [0., 1.] rather than percentiles [0., 100.]
* scalar q not supported (q must be iterable)
* optional weights on x
"""
if weights is None:
return np.percentile(x, [100. * qi for qi in q])
else:
idx = np.argsort(x)
xsorted = x[idx]
cdf = np.add.accumulate(weights[idx])
cdf /= cdf[-1]
return np.interp(q, cdf, xsorted).tolist()
def hist2d(x, y, bins=20, range=None, weights=None, levels=None, smooth=None,
ax=None, color=None, plot_datapoints=True, plot_density=True,
plot_contours=True, fill_contours=False,
contour_kwargs=None, contourf_kwargs=None, data_kwargs=None,
**kwargs):
"""
Plot a 2-D histogram of samples.
"""
if ax is None:
ax = pl.gca()
# Set the default range based on the data range if not provided.
if range is None:
if "extent" in kwargs:
logging.warn("Deprecated keyword argument 'extent'. "
"Use 'range' instead.")
range = kwargs["extent"]
else:
range = [[x.min(), x.max()], [y.min(), y.max()]]
# Set up the default plotting arguments.
if color is None:
color = "k"
# Choose the default "sigma" contour levels.
if levels is None:
levels = 1.0 - np.exp(-0.5 * np.arange(0.5, 2.1, 0.5) ** 2)
# This is the color map for the density plot, over-plotted to indicate the
# density of the points near the center.
density_cmap = LinearSegmentedColormap.from_list(
"density_cmap", [color, (1, 1, 1, 0)])
# This color map is used to hide the points at the high density areas.
white_cmap = LinearSegmentedColormap.from_list(
"white_cmap", [(1, 1, 1), (1, 1, 1)], N=2)
# This "color map" is the list of colors for the contour levels if the
# contours are filled.
rgba_color = colorConverter.to_rgba(color)
contour_cmap = [rgba_color] + [list(rgba_color) for l in levels]
for i, l in enumerate(levels):
contour_cmap[i+1][-1] *= float(len(levels) - i) / (len(levels)+1)
# We'll make the 2D histogram to directly estimate the density.
try:
H, X, Y = np.histogram2d(x.flatten(), y.flatten(), bins=bins,
range=range, weights=weights)
except ValueError:
raise ValueError("It looks like at least one of your sample columns "
"have no dynamic range. You could try using the "
"'range' argument.")
if smooth is not None:
if gaussian_filter is None:
raise ImportError("Please install scipy for smoothing")
H = gaussian_filter(H, smooth)
# Compute the density levels.
Hflat = H.flatten()
inds = np.argsort(Hflat)[::-1]
Hflat = Hflat[inds]
sm = np.cumsum(Hflat)
sm /= sm[-1]
V = np.empty(len(levels))
for i, v0 in enumerate(levels):
try:
V[i] = Hflat[sm <= v0][-1]
except:
V[i] = Hflat[0]
# Compute the bin centers.
X1, Y1 = 0.5 * (X[1:] + X[:-1]), 0.5 * (Y[1:] + Y[:-1])
# Extend the array for the sake of the contours at the plot edges.
H2 = H.min() + np.zeros((H.shape[0] + 4, H.shape[1] + 4))
H2[2:-2, 2:-2] = H
H2[2:-2, 1] = H[:, 0]
H2[2:-2, -2] = H[:, -1]
H2[1, 2:-2] = H[0]
H2[-2, 2:-2] = H[-1]
H2[1, 1] = H[0, 0]
H2[1, -2] = H[0, -1]
H2[-2, 1] = H[-1, 0]
H2[-2, -2] = H[-1, -1]
X2 = np.concatenate([
X1[0] + np.array([-2, -1]) * np.diff(X1[:2]),
X1,
X1[-1] + np.array([1, 2]) * np.diff(X1[-2:]),
])
Y2 = np.concatenate([
Y1[0] + np.array([-2, -1]) * np.diff(Y1[:2]),
Y1,
Y1[-1] + np.array([1, 2]) * np.diff(Y1[-2:]),
])
if plot_datapoints:
if data_kwargs is None:
data_kwargs = dict()
data_kwargs["color"] = data_kwargs.get("color", color)
data_kwargs["ms"] = data_kwargs.get("ms", 2.0)
data_kwargs["mec"] = data_kwargs.get("mec", "none")
data_kwargs["alpha"] = data_kwargs.get("alpha", 0.1)
ax.plot(x, y, "o", zorder=-1, rasterized=True, **data_kwargs)
# Plot the base fill to hide the densest data points.
if plot_contours or plot_density:
ax.contourf(X2, Y2, H2.T, [V[-1], H.max()],
cmap=white_cmap, antialiased=False)
if plot_contours and fill_contours:
if contourf_kwargs is None:
contourf_kwargs = dict()
contourf_kwargs["colors"] = contourf_kwargs.get("colors", contour_cmap)
contourf_kwargs["antialiased"] = contourf_kwargs.get("antialiased",
False)
ax.contourf(X2, Y2, H2.T, np.concatenate([[H.max()], V, [0]]),
**contourf_kwargs)
# Plot the density map. This can't be plotted at the same time as the
# contour fills.
elif plot_density:
ax.pcolor(X, Y, H.max() - H.T, cmap=density_cmap)
# Plot the contour edge colors.
if plot_contours:
if contour_kwargs is None:
contour_kwargs = dict()
contour_kwargs["colors"] = contour_kwargs.get("colors", color)
ax.contour(X2, Y2, H2.T, V, **contour_kwargs)
ax.set_xlim(range[0])
ax.set_ylim(range[1])