diff --git a/ggml/include/ggml-cuda.h b/ggml/include/ggml-cuda.h index 2d64e6a87edb9..b6e5820a4180a 100644 --- a/ggml/include/ggml-cuda.h +++ b/ggml/include/ggml-cuda.h @@ -6,6 +6,9 @@ #ifdef GGML_USE_HIPBLAS #define GGML_CUDA_NAME "ROCm" #define GGML_CUBLAS_NAME "hipBLAS" +#elif defined(GGML_USE_MUSA) +#define GGML_CUDA_NAME "MUSA" +#define GGML_CUBLAS_NAME "muBLAS" #else #define GGML_CUDA_NAME "CUDA" #define GGML_CUBLAS_NAME "cuBLAS" diff --git a/ggml/src/ggml-common.h b/ggml/src/ggml-common.h index fafd5fa7ae000..e40057632fc5a 100644 --- a/ggml/src/ggml-common.h +++ b/ggml/src/ggml-common.h @@ -19,7 +19,11 @@ typedef half2 ggml_half2; #define GGML_COMMON_DECL #elif defined(GGML_COMMON_DECL_CUDA) +#if defined(GGML_COMMON_DECL_MUSA) +#include +#else #include +#endif #include typedef half ggml_half; @@ -415,7 +419,7 @@ static_assert(sizeof(block_iq4_xs) == sizeof(ggml_half) + sizeof(uint16_t) + QK_ #define GGML_TABLE_END() }; #define GGML_COMMON_IMPL -#elif defined(GGML_COMMON_IMPL_CUDA) || defined(GGML_COMMON_IMPL_HIP) +#elif defined(GGML_COMMON_IMPL_CUDA) || defined(GGML_COMMON_IMPL_HIP) || defined(GGML_COMMON_IMPL_MUSA) #include #define GGML_TABLE_BEGIN(type, name, size) static const __device__ type name[size] = { diff --git a/ggml/src/ggml-cuda.cu b/ggml/src/ggml-cuda.cu index 928b839031dba..de07c19b11f53 100644 --- a/ggml/src/ggml-cuda.cu +++ b/ggml/src/ggml-cuda.cu @@ -169,7 +169,7 @@ static ggml_cuda_device_info ggml_cuda_init() { for (int id = 0; id < info.device_count; ++id) { int device_vmm = 0; -#if !defined(GGML_USE_HIPBLAS) && !defined(GGML_CUDA_NO_VMM) +#if !defined(GGML_USE_HIPBLAS) && !defined(GGML_CUDA_NO_VMM) && !defined(GGML_USE_MUSA) CUdevice device; CU_CHECK(cuDeviceGet(&device, id)); CU_CHECK(cuDeviceGetAttribute(&device_vmm, CU_DEVICE_ATTRIBUTE_VIRTUAL_MEMORY_MANAGEMENT_SUPPORTED, device)); @@ -181,7 +181,7 @@ static ggml_cuda_device_info ggml_cuda_init() { alloc_prop.location.id = id; CU_CHECK(cuMemGetAllocationGranularity(&info.devices[id].vmm_granularity, &alloc_prop, CU_MEM_ALLOC_GRANULARITY_RECOMMENDED)); } -#endif // !defined(GGML_USE_HIPBLAS) +#endif // !defined(GGML_USE_HIPBLAS) && !defined(GGML_CUDA_NO_VMM) && !defined(GGML_USE_MUSA) info.devices[id].vmm = !!device_vmm; cudaDeviceProp prop; @@ -315,7 +315,7 @@ struct ggml_cuda_pool_leg : public ggml_cuda_pool { }; // pool with virtual memory -#if !defined(GGML_USE_HIPBLAS) && !defined(GGML_CUDA_NO_VMM) +#if !defined(GGML_USE_HIPBLAS) && !defined(GGML_CUDA_NO_VMM) && !defined(GGML_USE_MUSA) struct ggml_cuda_pool_vmm : public ggml_cuda_pool { static const size_t CUDA_POOL_VMM_MAX_SIZE = 1ull << 35; // 32 GB @@ -409,14 +409,14 @@ struct ggml_cuda_pool_vmm : public ggml_cuda_pool { GGML_ASSERT(ptr == (void *) (pool_addr + pool_used)); } }; -#endif // !defined(GGML_USE_HIPBLAS) +#endif // !defined(GGML_USE_HIPBLAS) && !defined(GGML_CUDA_NO_VMM) && !defined(GGML_USE_MUSA) std::unique_ptr ggml_backend_cuda_context::new_pool_for_device(int device) { -#if !defined(GGML_USE_HIPBLAS) && !defined(GGML_CUDA_NO_VMM) +#if !defined(GGML_USE_HIPBLAS) && !defined(GGML_CUDA_NO_VMM) && !defined(GGML_USE_MUSA) if (ggml_cuda_info().devices[device].vmm) { return std::unique_ptr(new ggml_cuda_pool_vmm(device)); } -#endif +#endif // !defined(GGML_USE_HIPBLAS) && !defined(GGML_CUDA_NO_VMM) && !defined(GGML_USE_MUSA) return std::unique_ptr(new ggml_cuda_pool_leg(device)); } @@ -1341,7 +1341,7 @@ static void ggml_cuda_set_peer_access(const int n_tokens, int main_device) { static cudaError_t ggml_cuda_Memcpy2DPeerAsync( void * dst, int dstDevice, size_t dpitch, void * src, int srcDevice, size_t spitch, size_t width, size_t height, cudaStream_t stream) { -#if !defined(GGML_USE_HIPBLAS) +#if !defined(GGML_USE_HIPBLAS) && !defined(GGML_USE_MUSA) // cudaMemcpy2DAsync may fail with copies between vmm pools of different devices cudaMemcpy3DPeerParms p = {}; p.dstDevice = dstDevice; @@ -1355,7 +1355,7 @@ static cudaError_t ggml_cuda_Memcpy2DPeerAsync( GGML_UNUSED(dstDevice); GGML_UNUSED(srcDevice); return cudaMemcpy2DAsync(dst, dpitch, src, spitch, width, height, cudaMemcpyDeviceToDevice, stream); -#endif // !defined(GGML_USE_HIPBLAS) +#endif // !defined(GGML_USE_HIPBLAS) && !defined(GGML_USE_MUSA) } static void ggml_cuda_op_mul_mat( @@ -1828,6 +1828,9 @@ static void ggml_cuda_mul_mat_batched_cublas(ggml_backend_cuda_context & ctx, co } } #else +#ifdef GGML_USE_MUSA + GGML_ASSERT(false); +#else // !GGML_USE_MUSA if (r2 == 1 && r3 == 1 && ggml_is_contiguous_2(src0) && ggml_is_contiguous_2(src1)) { // there is no broadcast and src0, src1 are contiguous across dims 2, 3 // use cublasGemmStridedBatchedEx @@ -1870,6 +1873,7 @@ static void ggml_cuda_mul_mat_batched_cublas(ggml_backend_cuda_context & ctx, co cu_compute_type, CUBLAS_GEMM_DEFAULT_TENSOR_OP)); } +#endif // GGML_USE_MUSA #endif if (dst->op_params[0] == GGML_PREC_DEFAULT) { @@ -3031,7 +3035,7 @@ GGML_CALL bool ggml_backend_cuda_register_host_buffer(void * buffer, size_t size return false; } -#if CUDART_VERSION >= 11100 +#if CUDART_VERSION >= 11100 || defined(GGML_USE_MUSA) cudaError_t err = cudaHostRegister(buffer, size, cudaHostRegisterPortable | cudaHostRegisterReadOnly); if (err != cudaSuccess) { // clear the error diff --git a/ggml/src/ggml-cuda/common.cuh b/ggml/src/ggml-cuda/common.cuh index eac026f478e5a..8c3c20b90ad66 100644 --- a/ggml/src/ggml-cuda/common.cuh +++ b/ggml/src/ggml-cuda/common.cuh @@ -12,6 +12,10 @@ #else #define GGML_COMMON_DECL_CUDA #define GGML_COMMON_IMPL_CUDA +#if defined(GGML_USE_MUSA) +#define GGML_COMMON_DECL_MUSA +#define GGML_COMMON_IMPL_MUSA +#endif #endif #include "ggml-common.h" @@ -114,6 +118,150 @@ #define CUBLAS_STATUS_EXECUTION_FAILED HIPBLAS_STATUS_EXECUTION_FAILED #define CUBLAS_STATUS_INTERNAL_ERROR HIPBLAS_STATUS_INTERNAL_ERROR #define CUBLAS_STATUS_NOT_SUPPORTED HIPBLAS_STATUS_NOT_SUPPORTED +#elif defined(GGML_USE_MUSA) +#include +#include +#include +#include +// XXX: Keep the following order the same as hipBLAS +// #define CUBLAS_COMPUTE_16F MUBLAS_COMPUTE_16F +// #define CUBLAS_COMPUTE_32F MUBLAS_COMPUTE_32F +#define CUBLAS_COMPUTE_32F_FAST_16F MUBLAS_COMPUTE_32F_FAST_16F +#define CUBLAS_GEMM_DEFAULT MUBLAS_GEMM_DEFAULT +#define CUBLAS_GEMM_DEFAULT_TENSOR_OP MUBLAS_GEMM_DEFAULT +#define CUBLAS_OP_N MUBLAS_OP_N +#define CUBLAS_OP_T MUBLAS_OP_T +#define CUBLAS_STATUS_SUCCESS MUBLAS_STATUS_SUCCESS +// #define CUBLAS_TF32_TENSOR_OP_MATH 0 +#define CUDA_R_16F MUSA_R_16F +#define CUDA_R_32F MUSA_R_32F +// #define __shfl_xor_sync(mask, var, laneMask, width) __shfl_xor(var, laneMask, width) +// #define cublasComputeType_t mublasComputeType_t +#define cublasCreate mublasCreate +#define cublasDestroy mublasDestroy +#define cublasGemmEx mublasGemmEx +#define cublasGemmBatchedEx mublasGemmBatchedEx +#define cublasGemmStridedBatchedEx mublasGemmStridedBatchedEx +#define cublasHandle_t mublasHandle_t +// #define cublasSetMathMode(handle, mode) CUBLAS_STATUS_SUCCESS +#define cublasSetMathMode mublasSetMathMode +#define cublasSetStream mublasSetStream +#define cublasSgemm mublasSgemm +#define cublasStatus_t mublasStatus_t +#define cudaDataType_t musaDataType_t //deprecated, new hipblasDatatype not in 5.6 +#define cudaDeviceCanAccessPeer musaDeviceCanAccessPeer +#define cudaDeviceDisablePeerAccess musaDeviceDisablePeerAccess +#define cudaDeviceEnablePeerAccess musaDeviceEnablePeerAccess +#define cudaDeviceProp musaDeviceProp +#define cudaDeviceSynchronize musaDeviceSynchronize +#define cudaError_t musaError_t +#define cudaErrorPeerAccessAlreadyEnabled musaErrorPeerAccessAlreadyEnabled +#define cudaErrorPeerAccessNotEnabled musaErrorPeerAccessNotEnabled +#define cudaEventCreateWithFlags musaEventCreateWithFlags +#define cudaEventDisableTiming musaEventDisableTiming +#define cudaEventRecord musaEventRecord +#define cudaEventSynchronize musaEventSynchronize +#define cudaEvent_t musaEvent_t +#define cudaEventDestroy musaEventDestroy +#define cudaFree musaFree +#define cudaFreeHost musaFreeHost +#define cudaGetDevice musaGetDevice +#define cudaGetDeviceCount musaGetDeviceCount +#define cudaGetDeviceProperties musaGetDeviceProperties +#define cudaGetErrorString musaGetErrorString +#define cudaGetLastError musaGetLastError +#define cudaHostRegister musaHostRegister +#define cudaHostRegisterPortable musaHostRegisterPortable +#define cudaHostRegisterReadOnly musaHostRegisterReadOnly +#define cudaHostUnregister musaHostUnregister +#define cudaLaunchHostFunc musaLaunchHostFunc +#define cudaMalloc musaMalloc +#define cudaMallocHost musaMallocHost +#define cudaMemcpy musaMemcpy +#define cudaMemcpyAsync musaMemcpyAsync +#define cudaMemcpyPeerAsync musaMemcpyPeerAsync +#define cudaMemcpy2DAsync musaMemcpy2DAsync +#define cudaMemcpyDeviceToDevice musaMemcpyDeviceToDevice +#define cudaMemcpyDeviceToHost musaMemcpyDeviceToHost +#define cudaMemcpyHostToDevice musaMemcpyHostToDevice +#define cudaMemcpyKind musaMemcpyKind +#define cudaMemset musaMemset +#define cudaMemsetAsync musaMemsetAsync +#define cudaMemGetInfo musaMemGetInfo +#define cudaOccupancyMaxPotentialBlockSize musaOccupancyMaxPotentialBlockSize +#define cudaSetDevice musaSetDevice +#define cudaStreamCreateWithFlags musaStreamCreateWithFlags +#define cudaStreamDestroy musaStreamDestroy +#define cudaStreamFireAndForget musaStreamFireAndForget +#define cudaStreamNonBlocking musaStreamNonBlocking +#define cudaStreamPerThread musaStreamPerThread +#define cudaStreamSynchronize musaStreamSynchronize +#define cudaStreamWaitEvent musaStreamWaitEvent +#define cudaStream_t musaStream_t +#define cudaSuccess musaSuccess + +// XXX: Other CUDA => MUSA mapping +#define CU_MEM_ACCESS_FLAGS_PROT_READWRITE MU_MEM_ACCESS_FLAGS_PROT_READWRITE +#define CU_MEM_ALLOC_GRANULARITY_RECOMMENDED MU_MEM_ALLOC_GRANULARITY_RECOMMENDED +#define CU_MEM_ALLOCATION_TYPE_PINNED MU_MEM_ALLOCATION_TYPE_PINNED +#define CU_MEM_LOCATION_TYPE_DEVICE MU_MEM_LOCATION_TYPE_DEVICE +#define CUdevice MUdevice +#define CUdeviceptr MUdeviceptr +#define CUmemAccessDesc MUmemAccessDesc +#define CUmemAllocationProp MUmemAllocationProp +#define CUmemGenericAllocationHandle MUmemGenericAllocationHandle +#define cuDeviceGet muDeviceGet +#define cuDeviceGetAttribute muDeviceGetAttribute +#define cuMemAddressFree muMemAddressFree +#define cuMemAddressReserve muMemAddressReserve +#define cuMemCreate muMemCreate +#define cuMemGetAllocationGranularity muMemGetAllocationGranularity +#define cuMemMap muMemMap +#define cuMemRelease muMemRelease +#define cuMemSetAccess muMemSetAccess +#define cuMemUnmap muMemUnmap +#define cudaFuncAttributeMaxDynamicSharedMemorySize musaFuncAttributeMaxDynamicSharedMemorySize +#define cudaFuncSetAttribute musaFuncSetAttribute +#define cudaMemcpy3DPeerParms musaMemcpy3DPeerParms +#define make_cudaExtent make_musaExtent +#define make_cudaPitchedPtr make_musaPitchedPtr + +// XXX: USE_CUDA_GRAPH +#define CUDA_SUCCESS MUSA_SUCCESS +#define CUresult MUresult +#define cuGetErrorString muGetErrorString +#define cudaErrorGraphExecUpdateFailure musaErrorGraphExecUpdateFailure +#define cudaErrorInvalidDeviceFunction musaErrorInvalidDeviceFunction +#define cudaGraphDestroy musaGraphDestroy +#define cudaGraphExecDestroy musaGraphExecDestroy +#define cudaGraphExec_t musaGraphExec_t +#define cudaGraphExecUpdate musaGraphExecUpdate +#define cudaGraphExecUpdateResultInfo musaGraphExecUpdateResult +#define cudaGraphGetNodes musaGraphGetNodes +#define cudaGraphInstantiate musaGraphInstantiate +#define cudaGraphKernelNodeGetParams musaGraphKernelNodeGetParams +#define cudaGraphKernelNodeSetParams musaGraphKernelNodeSetParams +#define cudaGraphLaunch musaGraphLaunch +#define cudaGraphNodeGetType musaGraphNodeGetType +#define cudaGraphNode_t musaGraphNode_t +#define cudaGraphNodeType musaGraphNodeType +#define cudaGraphNodeTypeKernel musaGraphNodeTypeKernel +#define cudaGraph_t musaGraph_t +#define cudaKernelNodeParams musaKernelNodeParams +#define cudaStreamCaptureModeRelaxed musaStreamCaptureModeRelaxed +#define cudaStreamEndCapture musaStreamEndCapture + +// XXX: cuBLAS => muBLAS mapping +#define CU_DEVICE_ATTRIBUTE_VIRTUAL_MEMORY_MANAGEMENT_SUPPORTED MU_DEVICE_ATTRIBUTE_VIRTUAL_ADDRESS_MANAGEMENT_SUPPORTED +#define CUBLAS_TF32_TENSOR_OP_MATH MUBLAS_MATH_MODE_DEFAULT +#define CUBLAS_COMPUTE_16F CUDA_R_16F +#define CUBLAS_COMPUTE_32F CUDA_R_32F +#define cublasComputeType_t cudaDataType_t + +// XXX: Clang builtins mapping +#define __vsub4 __vsub4_musa +#define __vcmpeq4 __vcmpeq4_musa +#define __vcmpne4 __vcmpne4_musa #else #include #include @@ -168,9 +316,13 @@ void ggml_cuda_error(const char * stmt, const char * func, const char * file, in #define CUDA_CHECK(err) CUDA_CHECK_GEN(err, cudaSuccess, cudaGetErrorString) -#if CUDART_VERSION >= 12000 +#if CUDART_VERSION >= 12000 || defined(GGML_USE_MUSA) static const char * cublas_get_error_str(const cublasStatus_t err) { +#ifndef GGML_USE_MUSA return cublasGetStatusString(err); +#else + return mublasStatus_to_string(err); +#endif // GGML_USE_MUSA } #else static const char * cublas_get_error_str(const cublasStatus_t err) { @@ -200,7 +352,7 @@ static const char * cu_get_error_str(CUresult err) { #define CU_CHECK(err) CUDA_CHECK_GEN(err, CUDA_SUCCESS, cu_get_error_str) #endif -#if CUDART_VERSION >= 11100 +#if CUDART_VERSION >= 11100 || defined(GGML_USE_MUSA) #define GGML_CUDA_ASSUME(x) __builtin_assume(x) #else #define GGML_CUDA_ASSUME(x) @@ -214,6 +366,42 @@ typedef float dfloat; // dequantize float typedef float2 dfloat2; #endif //GGML_CUDA_F16 +#if defined(GGML_USE_MUSA) +#ifndef __has_builtin + #define __has_builtin(x) 0 +#endif + +typedef uint8_t uint8x4_t __attribute__((ext_vector_type(4))); + +static __device__ __forceinline__ int __vsub4_musa(const int a, const int b) { + return __vsubss4(a, b); +} + +static __device__ __forceinline__ unsigned int __vcmpeq4_musa(unsigned int a, unsigned int b) { + const uint8x4_t& va = reinterpret_cast(a); + const uint8x4_t& vb = reinterpret_cast(b); + unsigned int c; + uint8x4_t& vc = reinterpret_cast(c); +#pragma unroll + for (int i = 0; i < 4; ++i) { + vc[i] = va[i] == vb[i] ? 0xff : 0x00; + } + return c; +} + +static __device__ __forceinline__ unsigned int __vcmpne4_musa(unsigned int a, unsigned int b) { + const uint8x4_t& va = reinterpret_cast(a); + const uint8x4_t& vb = reinterpret_cast(b); + unsigned int c; + uint8x4_t& vc = reinterpret_cast(c); +#pragma unroll + for (int i = 0; i < 4; ++i) { + vc[i] = va[i] == vb[i] ? 0x00 : 0xff; + } + return c; +} +#endif // defined(GGML_USE_MUSA) + #if defined(GGML_USE_HIPBLAS) #define __CUDA_ARCH__ 1300 @@ -455,7 +643,7 @@ static __device__ __forceinline__ uint32_t __hgt2_mask(const half2 a, const half const uint32_t mask_high = 0xFFFF0000 * (float(__high2half(a)) > float(__high2half(b))); return mask_low | mask_high; } -#endif // CUDART_VERSION < 12000 +#endif // CUDART_VERSION < CUDART_HMASK static __device__ __forceinline__ int ggml_cuda_dp4a(const int a, const int b, int c) { #if defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__) diff --git a/ggml/src/ggml-quants.c b/ggml/src/ggml-quants.c index 76718906c3fc1..528b3560376cf 100644 --- a/ggml/src/ggml-quants.c +++ b/ggml/src/ggml-quants.c @@ -4191,15 +4191,18 @@ void ggml_vec_dot_q4_0_q8_0(int n, float * restrict s, size_t bs, const void * r sumf = hsum_float_4x4(acc_0, acc_1, acc_2, acc_3); #endif for (; ib < nb; ++ib) { - int sumi = 0; + int sumi0 = 0; + int sumi1 = 0; for (int j = 0; j < qk/2; ++j) { const int v0 = (x[ib].qs[j] & 0x0F) - 8; const int v1 = (x[ib].qs[j] >> 4) - 8; - sumi += (v0 * y[ib].qs[j]) + (v1 * y[ib].qs[j + qk/2]); + sumi0 += (v0 * y[ib].qs[j]); + sumi1 += (v1 * y[ib].qs[j + qk/2]); } + int sumi = sumi0 + sumi1; sumf += sumi*GGML_FP16_TO_FP32(x[ib].d)*GGML_FP16_TO_FP32(y[ib].d); } @@ -4475,15 +4478,18 @@ void ggml_vec_dot_q4_1_q8_1(int n, float * restrict s, size_t bs, const void * r sumf = hsum_float_8(acc) + summs; #endif for (; ib < nb; ++ib) { - int sumi = 0; + int sumi0 = 0; + int sumi1 = 0; for (int j = 0; j < qk/2; ++j) { const int v0 = (x[ib].qs[j] & 0x0F); const int v1 = (x[ib].qs[j] >> 4); - sumi += (v0 * y[ib].qs[j]) + (v1 * y[ib].qs[j + qk/2]); + sumi0 += (v0 * y[ib].qs[j]); + sumi1 += (v1 * y[ib].qs[j + qk/2]); } + int sumi = sumi0 + sumi1; sumf += (GGML_FP16_TO_FP32(x[ib].d)*GGML_FP16_TO_FP32(y[ib].d))*sumi + GGML_FP16_TO_FP32(x[ib].m)*GGML_FP16_TO_FP32(y[ib].s); } @@ -4824,18 +4830,21 @@ void ggml_vec_dot_q5_0_q8_0(int n, float * restrict s, size_t bs, const void * r uint32_t qh; memcpy(&qh, x[ib].qh, sizeof(qh)); - int sumi = 0; + int sumi0 = 0; + int sumi1 = 0; for (int j = 0; j < qk/2; ++j) { const uint8_t xh_0 = ((qh & (1u << (j + 0 ))) >> (j + 0 )) << 4; const uint8_t xh_1 = ((qh & (1u << (j + 16))) >> (j + 12)); - const int32_t x0 = ((x[ib].qs[j] & 0x0F) | xh_0) - 16; - const int32_t x1 = ((x[ib].qs[j] >> 4) | xh_1) - 16; + const int32_t x0 = (int8_t)(((x[ib].qs[j] & 0x0F) | xh_0) - 16); + const int32_t x1 = (int8_t)(((x[ib].qs[j] >> 4) | xh_1) - 16); - sumi += (x0 * y[ib].qs[j]) + (x1 * y[ib].qs[j + qk/2]); + sumi0 += (x0 * y[ib].qs[j]); + sumi1 += (x1 * y[ib].qs[j + qk/2]); } + int sumi = sumi0 + sumi1; sumf += (GGML_FP16_TO_FP32(x[ib].d)*GGML_FP16_TO_FP32(y[ib].d)) * sumi; } @@ -5195,7 +5204,8 @@ void ggml_vec_dot_q5_1_q8_1(int n, float * restrict s, size_t bs, const void * r uint32_t qh; memcpy(&qh, x[ib].qh, sizeof(qh)); - int sumi = 0; + int sumi0 = 0; + int sumi1 = 0; for (int j = 0; j < qk/2; ++j) { const uint8_t xh_0 = ((qh >> (j + 0)) << 4) & 0x10; @@ -5204,9 +5214,11 @@ void ggml_vec_dot_q5_1_q8_1(int n, float * restrict s, size_t bs, const void * r const int32_t x0 = (x[ib].qs[j] & 0xF) | xh_0; const int32_t x1 = (x[ib].qs[j] >> 4) | xh_1; - sumi += (x0 * y[ib].qs[j]) + (x1 * y[ib].qs[j + qk/2]); + sumi0 += (x0 * y[ib].qs[j]); + sumi1 += (x1 * y[ib].qs[j + qk/2]); } + int sumi = sumi0 + sumi1; sumf += (GGML_FP16_TO_FP32(x[ib].d)*GGML_FP16_TO_FP32(y[ib].d))*sumi + GGML_FP16_TO_FP32(x[ib].m)*GGML_FP16_TO_FP32(y[ib].s); } diff --git a/ggml/src/ggml-vulkan.cpp b/ggml/src/ggml-vulkan.cpp index d63260bb17b21..08bba3dd50428 100644 --- a/ggml/src/ggml-vulkan.cpp +++ b/ggml/src/ggml-vulkan.cpp @@ -236,8 +236,8 @@ struct vk_device_struct { }; struct vk_buffer_struct { - vk::Buffer buffer; - vk::DeviceMemory device_memory; + vk::Buffer buffer = VK_NULL_HANDLE; + vk::DeviceMemory device_memory = VK_NULL_HANDLE; vk::MemoryPropertyFlags memory_property_flags; void * ptr; size_t size = 0; diff --git a/ggml/src/ggml.c b/ggml/src/ggml.c index c955a02001c68..dbe718679cde4 100644 --- a/ggml/src/ggml.c +++ b/ggml/src/ggml.c @@ -14800,7 +14800,7 @@ static void ggml_compute_forward_pool_1d_sk_p0( const struct ggml_tensor * src = dst->src[0]; - assert(src->type == GGML_TYPE_F32); + assert(src->type == GGML_TYPE_F32 || src->type == GGML_TYPE_F16); if (params->ith != 0) { return; @@ -14813,10 +14813,8 @@ static void ggml_compute_forward_pool_1d_sk_p0( const int64_t rs = dst->ne[0]; while (cdata < data_end) { - const float * const srow = (const float *)cdata; - + const void * srow = (const void *)cdata; int j = 0; - for (int64_t i = 0; i < rs; ++i) { switch (op) { case GGML_OP_POOL_AVG: drow[i] = 0; break; @@ -14824,10 +14822,11 @@ static void ggml_compute_forward_pool_1d_sk_p0( case GGML_OP_POOL_COUNT: GGML_ABORT("fatal error"); } for (int ki = 0; ki < k; ++ki) { + const float srow_j = (src->type == GGML_TYPE_F32) ? ((const float*)srow)[j] : GGML_FP16_TO_FP32(((const ggml_fp16_t*)srow)[j]); switch (op) { - case GGML_OP_POOL_AVG: drow[i] += srow[j]; break; - case GGML_OP_POOL_MAX: if (srow[j] > drow[i]) drow[i] = srow[j]; break; - case GGML_OP_POOL_COUNT: GGML_ABORT("fatal error"); + case GGML_OP_POOL_AVG: drow[i] += srow_j; break; + case GGML_OP_POOL_MAX: if (srow_j > drow[i]) drow[i] = srow_j; break; + case GGML_OP_POOL_COUNT: GGML_ABORT("fatal error"); } ++j; } @@ -14868,7 +14867,7 @@ static void ggml_compute_forward_pool_2d( const struct ggml_tensor * src = dst->src[0]; - GGML_ASSERT(src->type == GGML_TYPE_F32); + assert(src->type == GGML_TYPE_F32 || src->type == GGML_TYPE_F16); if (params->ith != 0) { return; @@ -14911,14 +14910,15 @@ static void ggml_compute_forward_pool_2d( for (int ky = 0; ky < k1; ++ky) { if (iy + ky < 0 || iy + ky >= src->ne[1]) continue; - const float * const srow = (const float *)(cdata + src->nb[1] * (iy + ky)); + const void * srow = (const void *)(cdata + src->nb[1] * (iy + ky)); for (int kx = 0; kx < k0; ++kx) { int j = ix + kx; if (j < 0 || j >= src->ne[0]) continue; + const float srow_j = (src->type == GGML_TYPE_F32) ? ((const float*)srow)[j] : GGML_FP16_TO_FP32(((const ggml_fp16_t*)srow)[j]); switch (op) { - case GGML_OP_POOL_AVG: *out += srow[j]; break; - case GGML_OP_POOL_MAX: if (srow[j] > *out) *out = srow[j]; break; - case GGML_OP_POOL_COUNT: GGML_ABORT("fatal error"); + case GGML_OP_POOL_AVG: *out += srow_j; break; + case GGML_OP_POOL_MAX: if (srow_j > *out) *out = srow_j; break; + case GGML_OP_POOL_COUNT: GGML_ABORT("fatal error"); } } } @@ -18132,7 +18132,6 @@ static void ggml_build_forward_impl(struct ggml_cgraph * cgraph, struct ggml_ten } const int n0 = cgraph->n_nodes; - UNUSED(n0); ggml_visit_parents(cgraph, tensor); diff --git a/koboldcpp.py b/koboldcpp.py index 99ea549fa046d..b3f01b13e0661 100644 --- a/koboldcpp.py +++ b/koboldcpp.py @@ -41,7 +41,7 @@ modelbusy = threading.Lock() requestsinqueue = 0 defaultport = 5001 -KcppVersion = "1.71" +KcppVersion = "1.71.1" showdebug = True guimode = False showsamplerwarning = True