forked from manveers96/Machine-Learning-in-NDN-network
-
Notifications
You must be signed in to change notification settings - Fork 0
/
nnCostFunction.m
145 lines (106 loc) · 4.75 KB
/
nnCostFunction.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
function [J grad] = nnCostFunction(nn_params, ...
input_layer_size, ...
hidden_layer_size, ...
num_labels, ...
X, y, lambda)
%NNCOSTFUNCTION Implements the neural network cost function for a two layer
%neural network which performs classification
% [J grad] = NNCOSTFUNCTON(nn_params, hidden_layer_size, num_labels, ...
% X, y, lambda) computes the cost and gradient of the neural network. The
% parameters for the neural network are "unrolled" into the vector
% nn_params and need to be converted back into the weight matrices.
%
% The returned parameter grad should be a "unrolled" vector of the
% partial derivatives of the neural network.
%
% Reshape nn_params back into the parameters Theta1 and Theta2, the weight matrices
% for our 2 layer neural network
Theta1 = reshape(nn_params(1:hidden_layer_size * (input_layer_size + 1)), ...
hidden_layer_size, (input_layer_size + 1));
Theta2 = reshape(nn_params((1 + (hidden_layer_size * (input_layer_size + 1))):end), ...
num_labels, (hidden_layer_size + 1));
% Setup some useful variables
m = size(X, 1);
% You need to return the following variables correctly
J = 0;
Theta1_grad = zeros(size(Theta1));
Theta2_grad = zeros(size(Theta2));
% ====================== YOUR CODE HERE ======================
% Instructions: You should complete the code by working through the
% following parts.
%
% Part 1: Feedforward the neural network and return the cost in the
% variable J. After implementing Part 1, you can verify that your
% cost function computation is correct by verifying the cost
% computed in ex4.m
% Add ones to the X data matrix
X = [ones(m, 1) X];
% Convert y from (1-10) class into num_labels vector
%yd = eye(num_labels);
%y = yd(y,:);
%%% Map from Layer 1 to Layer 2
a1=X;
% Coverts to matrix of 5000 examples x 26 thetas
z2=X*Theta1';
% Sigmoid function converts to p between 0 to 1
a2=sigmoid(z2);
%%% Map from Layer 2 to Layer 3
% Add ones to the h1 data matrix
a2=[ones(m, 1) a2];
% Converts to matrix of 5000 exampls x num_labels
z3=a2*Theta2';
% Sigmoid function converts to p between 0 to 1
a3=sigmoid(z3);
% Compute cost
%logisf=(-y)'*log(a3)-(1-y)'*log(1-a3);
logisf=(-y).*log(a3)-(1-y).*log(1-a3); % Becos y is now a matrix, so use dot product, unlike above
%J=((1/m).*sum(sum(logisf))); % This line is correct if there is no regularization
% Try with ...
% J=((1/m).*sum((logisf)));
% That will give J in 10 columns (it has summed m samples), so need to sum again
%% Regularized cost
Theta1s=Theta1(:,2:end);
Theta2s=Theta2(:,2:end);
J=((1/m).*sum(sum(logisf)))+(lambda/(2*m)).*(sum(sum(Theta1s.^2))+sum(sum(Theta2s.^2)));
% Part 2: Implement the backpropagation algorithm to compute the gradients
% Theta1_grad and Theta2_grad. You should return the partial derivatives of
% the cost function with respect to Theta1 and Theta2 in Theta1_grad and
% Theta2_grad, respectively. After implementing Part 2, you can check
% that your implementation is correct by running checkNNGradients
%
% Note: The vector y passed into the function is a vector of labels
% containing values from 1..K. You need to map this vector into a
% binary vector of 1's and 0's to be used with the neural network
% cost function.
%
% Hint: We recommend implementing backpropagation using a for-loop
% over the training examples if you are implementing it for the
% first time.
%
% Set all the D to zeros
tridelta_1=0;
tridelta_2=0;
% Compute delta, tridelta and big D
delta_3=a3-y;
z2=[ones(m,1) z2];
delta_2=delta_3*Theta2.*sigmoidGradient(z2);
delta_2=delta_2(:,2:end);
tridelta_1=tridelta_1+delta_2'*a1; % Same size as Theta1_grad (25x401)
tridelta_2=tridelta_2+delta_3'*a2; % Same size as Theta2_grad (10x26)
Theta1_grad=(1/m).*tridelta_1;
Theta2_grad=(1/m).*tridelta_2;
%Theta1_grad=0;
%Theta2_grad=0;
%end
% Part 3: Implement regularization with the cost function and gradients.
%
% Hint: You can implement this around the code for
% backpropagation. That is, you can compute the gradients for
% the regularization separately and then add them to Theta1_grad
% and Theta2_grad from Part 2.
%
% -------------------------------------------------------------
% =========================================================================
% Unroll gradients
grad = [Theta1_grad(:) ; Theta2_grad(:)];
end