forked from lancopku/superAE
-
Notifications
You must be signed in to change notification settings - Fork 0
/
preprocess.py
273 lines (213 loc) · 9.27 KB
/
preprocess.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
'''
@Author: Shuming Ma
@mail: [email protected]
@homepage : shumingma.com
'''
import argparse
import torch
import numpy
import data.dict as dict
from data.dataloader import dataset
parser = argparse.ArgumentParser(description='preprocess.py')
##
## **Preprocess Options**
##
parser.add_argument('-config', help="Read options from this file")
parser.add_argument('-train_src', required=True,
help="Path to the training source data")
parser.add_argument('-train_tgt', required=True,
help="Path to the training target data")
parser.add_argument('-valid_src', required=True,
help="Path to the validation source data")
parser.add_argument('-valid_tgt', required=True,
help="Path to the validation target data")
parser.add_argument('-save_data', required=True,
help="Output file for the prepared data")
parser.add_argument('-src_vocab_size', type=int, default=50000,
help="Size of the source vocabulary")
parser.add_argument('-tgt_vocab_size', type=int, default=50000,
help="Size of the target vocabulary")
parser.add_argument('-src_vocab',
help="Path to an existing source vocabulary")
parser.add_argument('-tgt_vocab',
help="Path to an existing target vocabulary")
parser.add_argument('-src_length', type=int, default=0,
help="Maximum source sequence length")
parser.add_argument('-tgt_length', type=int, default=0,
help="Maximum target sequence length")
parser.add_argument('-trun_src', type=int, default=0,
help="Maximum source sequence length")
parser.add_argument('-trun_tgt', type=int, default=0,
help="Maximum target sequence length")
parser.add_argument('-src_suf', default='src',
help="the suffix of the source filename")
parser.add_argument('-tgt_suf', default='tgt',
help="the suffix of the target filename")
parser.add_argument('-shuffle', type=int, default=0,
help="Shuffle data")
parser.add_argument('-seed', type=int, default=3435,
help="Random seed")
parser.add_argument('-lower', action='store_true', help='lowercase data')
parser.add_argument('-src_char', action='store_true', help='character based encoding')
parser.add_argument('-tgt_char', action='store_true', help='character based decoding')
parser.add_argument('-share', action='store_true', help='share the vocabulary between source and target')
parser.add_argument('-report_every', type=int, default=100000,
help="Report status every this many sentences")
opt = parser.parse_args()
torch.manual_seed(opt.seed)
def makeVocabulary(filename, size):
vocab = dict.Dict([dict.PAD_WORD, dict.UNK_WORD,
dict.BOS_WORD, dict.EOS_WORD], lower=opt.lower)
if type(filename) == str:
filename = [filename]
for _filename in filename:
if opt.src_suf in _filename:
max_tokens = opt.trun_src
max_lengths = opt.src_length
char = opt.src_char
print(_filename, ' max tokens: ', max_tokens)
print(_filename, ' max lengths: ', max_lengths)
elif opt.tgt_suf in _filename:
max_tokens = opt.trun_tgt
max_lengths = opt.tgt_length
char = opt.tgt_char
print(_filename, ' max tokens: ', max_tokens)
print(_filename, ' max lengths: ', max_lengths)
with open(_filename, encoding='utf8') as f:
for sent in f.readlines():
if char:
tokens = list(sent.strip())
else:
tokens = sent.strip().split()
if max_lengths > 0 and len(tokens) > max_lengths:
continue
if max_tokens > 0:
tokens = tokens[:max_tokens]
for word in tokens:
vocab.add(word + " ")
originalSize = vocab.size()
if size == 0:
size = originalSize
vocab = vocab.prune(size)
print('Created dictionary of size %d (pruned from %d)' %
(vocab.size(), originalSize))
return vocab
def initVocabulary(name, dataFile, vocabFile, vocabSize):
vocab = None
if vocabFile is not None:
# If given, load existing word dictionary.
print('Reading ' + name + ' vocabulary from \'' + vocabFile + '\'...')
vocab = dict.Dict()
vocab.loadFile(vocabFile)
print('Loaded ' + str(vocab.size()) + ' ' + name + ' words')
if vocab is None:
# If a dictionary is still missing, generate it.
print('Building ' + name + ' vocabulary...')
genWordVocab = makeVocabulary(dataFile, vocabSize)
vocab = genWordVocab
return vocab
def saveVocabulary(name, vocab, file):
print('Saving ' + name + ' vocabulary to \'' + file + '\'...')
vocab.writeFile(file)
def makeData(srcFile, tgtFile, srcDicts, tgtDicts, sort=False):
src, tgt = [], []
raw_src, raw_tgt = [], []
sizes = []
count, ignored = 0, 0
print('Processing %s & %s ...' % (srcFile, tgtFile))
srcF = open(srcFile, encoding='utf8')
tgtF = open(tgtFile, encoding='utf8')
while True:
sline = srcF.readline()
tline = tgtF.readline()
# normal end of file
if sline == "" and tline == "":
break
# source or target does not have same number of lines
if sline == "" or tline == "":
print('WARNING: source and target do not have the same number of sentences')
break
sline = sline.strip()
tline = tline.strip()
# source and/or target are empty
if sline == "" or tline == "":
print('WARNING: ignoring an empty line ('+str(count+1)+')')
ignored += 1
continue
if opt.lower:
sline = sline.lower()
tline = tline.lower()
srcWords = sline.split() if not opt.src_char else list(sline)
tgtWords = tline.split() if not opt.tgt_char else list(tline)
if (opt.src_length == 0 or len(srcWords) <= opt.src_length) and \
(opt.tgt_length == 0 or len(tgtWords) <= opt.tgt_length):
if opt.trun_src > 0:
srcWords = srcWords[:opt.trun_src]
if opt.trun_tgt > 0:
tgtWords = tgtWords[:opt.trun_tgt]
srcWords = [word+" " for word in srcWords]
tgtWords = [word+" " for word in tgtWords]
src += [srcDicts.convertToIdx(srcWords,
dict.UNK_WORD)]
tgt += [tgtDicts.convertToIdx(tgtWords,
dict.UNK_WORD,
dict.BOS_WORD,
dict.EOS_WORD)]
raw_src += [srcWords]
raw_tgt += [tgtWords]
sizes += [len(srcWords)]
else:
ignored += 1
count += 1
if count % opt.report_every == 0:
print('... %d sentences prepared' % count)
srcF.close()
tgtF.close()
if opt.shuffle == 1:
print('... shuffling sentences')
perm = torch.randperm(len(src))
src = [src[idx] for idx in perm]
tgt = [tgt[idx] for idx in perm]
sizes = [sizes[idx] for idx in perm]
raw_src = [raw_src[idx] for idx in perm]
raw_tgt = [raw_tgt[idx] for idx in perm]
if sort:
print('... sorting sentences by size')
_, perm = torch.sort(torch.Tensor(sizes))
src = [src[idx] for idx in perm]
tgt = [tgt[idx] for idx in perm]
raw_src = [raw_src[idx] for idx in perm]
raw_tgt = [raw_tgt[idx] for idx in perm]
print('Prepared %d sentences (%d ignored due to length == 0 or > %d)' %
(len(src), ignored, opt.src_length))
return dataset(src, tgt, raw_src, raw_tgt)
def main():
dicts = {}
if opt.share:
assert opt.src_vocab_size == opt.tgt_vocab_size
print('share the vocabulary between source and target')
dicts['src'] = initVocabulary('source and target',
[opt.train_src, opt.train_tgt],
opt.src_vocab,
opt.src_vocab_size)
dicts['tgt'] = dicts['src']
else:
dicts['src'] = initVocabulary('source', opt.train_src, opt.src_vocab,
opt.src_vocab_size)
dicts['tgt'] = initVocabulary('target', opt.train_tgt, opt.tgt_vocab,
opt.tgt_vocab_size)
print('Preparing training ...')
train = makeData(opt.train_src, opt.train_tgt, dicts['src'], dicts['tgt'])
print('Preparing validation ...')
valid = makeData(opt.valid_src, opt.valid_tgt, dicts['src'], dicts['tgt'])
if opt.src_vocab is None:
saveVocabulary('source', dicts['src'], opt.save_data + '.src.dict')
if opt.tgt_vocab is None:
saveVocabulary('target', dicts['tgt'], opt.save_data + '.tgt.dict')
print('Saving data to \'' + opt.save_data + '.train.pt\'...')
save_data = {'dicts': dicts,
'train': train,
'valid': valid}
torch.save(save_data, opt.save_data + '.train.pt')
if __name__ == "__main__":
main()