-
Notifications
You must be signed in to change notification settings - Fork 0
/
printarchi.py
191 lines (149 loc) · 5.64 KB
/
printarchi.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
# Tipe MP 2016 #
# Capdevila - Germa #
# Version 3-27.09.15#
from pylab import *
from tkinter import *
from random import *
from math import *
def printarchi(ch):
## Declarations
# Matrice
dimx=50
dimy=50
bords=4
# # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # #
# # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # #
densite=0.2 # Entre 0 et 10
# # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # #
# # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # #
#Types
Vide=0
Mur=1
Occupee=2
Sortie=3
Obstacle=5
tours=50
# # # # # # # # # # # # # Paniq mode #
PM=False
# # # # # # # # # # # # #
sorties=[[1,25]] #Position des sorties
global nbsorties
nbsorties=0
bords=3
Cellules=[#n
[#x
[0 for i in range(dimy)]#y
for j in range(dimx)]
for k in range(tours+1)]
file=open(ch,'r')
Arch=file.read()
Arch2=Arch.split('[') # Fonction de conversion 01.04 qui marche !
for indice in range(2,len(Arch2)):
obj=Arch2[indice].split(',')
for ind2 in range(0,len(obj)-1):
i=0
while obj[ind2][i]==' ':
i+=1
Cellules[0][indice-2][ind2]=int(obj[ind2][i])
#### Partie graphique
global ite
ite=0
def damier(): #fonction dessinant le tableau
global ite
can1.delete(ALL)
n=ite
ligne_vert()
ligne_hor()
for i in range(dimx):
for j in range(dimy):
x=i*c
y=j*c
if Cellules[n][i][j]==Vide:
can1.create_rectangle(x, y, x+c, y+c, fill='white')
elif Cellules[n][i][j]==Occupee:
can1.create_rectangle(x, y, x+c, y+c, fill='blue')
elif Cellules[n][i][j]==Mur:
can1.create_rectangle(x, y, x+c, y+c, fill='black')
elif Cellules[n][i][j]==Sortie:
can1.create_rectangle(x, y, x+c, y+c, fill='green')
elif Cellules[n][i][j]==Obstacle:
can1.create_rectangle(x, y, x+c, y+c, fill='red')
def ligne_vert():
c_x = 0
while c_x != larg:
can1.create_line(c_x,0,c_x,hauteur,width=1,fill='black')
c_x+=c
def ligne_hor():
c_y = 0
while c_y != hauteur:
can1.create_line(0,c_y,larg,c_y,width=1,fill='black')
c_y+=c
def click_gauche(event): #creer un occupant
x = event.x -(event.x%c)
y = event.y -(event.y%c)
if type(Cellules[0][x//c][y//c])!=str:
can1.create_rectangle(x, y, x+c, y+c, fill=str('#%02x%02x%02x' % (255,0,0)))
Cellules[0][x//c][y//c]=str('#%02x%02x%02x' % (255,0,0))
else:
can1.create_rectangle(x, y, x+c, y+c, fill='white')
Cellules[0][x//c][y//c]=Vide
def click_droit(event): #creer un mur
x = event.x -(event.x%c)
y = event.y -(event.y%c)
print(x,y)
if Cellules[0][x//c][y//c]!=Mur:
can1.create_rectangle(x, y, x+c, y+c, fill='black')
Cellules[0][x//c][y//c]=Mur
else:
can1.create_rectangle(x, y, x+c, y+c, fill='white')
Cellules[0][x//c][y//c]=Vide
def go():
"démarrage de l'animation"
# ######
for instance in range(tours): # On lance le calcul
# Recherche de personne
startx=randint(0,dimx) # Choix aleatoire a chaque tour le du debut de la recherche
starty=randint(0,dimy)
for x in range(dimx):
for y in range(dimy):
if type(Cellules[instance][(x+startx)%dimx][(y+starty)%dimy])==str :
Comportement(instance,(x+startx)%dimx,(y+starty)%dimy)
elif type(Cellules[instance][(x+startx)%dimx][(y+starty)%dimy])!=str and Cellules[instance][((x+startx)%dimx)%dimx][(y+starty)%dimy]!=Vide :
Cellules[instance+1][(x+startx)%dimx][(y+starty)%dimy]=Cellules[instance][(x+startx)%dimx][(y+starty)%dimy]
# ###########
print('nbsorties=',nbsorties)
global OK
OK =1
play()
def stop():
"arrêt de l'animation"
global OK
OK =0
def play(): #??
global OK, vitesse, ite
ite+=1
damier()
if OK!=0 and ite<tours:
fen1.after(vitesse,play)
#les différentes variables:
echelle=30
# taille de la grille
hauteur = echelle*dimx
larg = echelle*dimy
#taille des cellules
c = echelle
#vitesse de l'animation (en réalité c'est l'attente entre chaque étapes en ms)
vitesse=1
OK=0
#programme "principal"
fen1 = Tk()
can1 = Canvas(fen1, width=larg, height=hauteur, bg ='white')
can1.bind("<Button-1>", click_gauche)
can1.bind("<Button-3>", click_droit)
can1.pack(side =TOP, padx =5, pady =5)
damier()
b1 = Button(fen1, text ='Départ', command =go)
b2 = Button(fen1, text ='Arrêt', command =stop)
b1.pack(side =LEFT, padx =3, pady =3)
b2.pack(side =LEFT, padx =3, pady =3)
fen1.mainloop()