-
Notifications
You must be signed in to change notification settings - Fork 0
/
train_tpu_new.py
812 lines (702 loc) · 36.7 KB
/
train_tpu_new.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
#!/usr/bin/env python3
""" ImageNet Training Script
This is intended to be a lean and easily modifiable ImageNet training script that reproduces ImageNet
training results with some of the latest networks and training techniques. It favours canonical PyTorch
and standard Python style over trying to be able to 'do it all.' That said, it offers quite a few speed
and training result improvements over the usual PyTorch example scripts. Repurpose as you see fit.
This script was started from an early version of the PyTorch ImageNet example
(https://github.com/pytorch/examples/tree/master/imagenet)
NVIDIA CUDA specific speedups adopted from NVIDIA Apex examples
(https://github.com/NVIDIA/apex/tree/master/examples/imagenet)
Hacked together by / Copyright 2020 Ross Wightman (https://github.com/rwightman)
"""
import argparse
import time
import yaml
import os
import logging
from collections import OrderedDict
from datetime import datetime
from dataclasses import replace
from typing import Tuple
import torch
import torch.nn as nn
#import torchvision.utils
import models.efficientnet
from bits import initialize_device, setup_model_and_optimizer, DeviceEnv, Monitor, Tracker,\
TrainState, TrainServices, TrainCfg, CheckpointManager, AccuracyTopK, AvgTensor, distribute_bn
from data import create_dataset, create_transform_v2, create_loader_v2, resolve_data_config,\
PreprocessCfg, AugCfg, MixupCfg, AugMixDataset
from timm.models import create_model, safe_model_name, convert_splitbn_model
from timm.loss import *
from timm.optim import optimizer_kwargs
from timm.scheduler import create_scheduler
from timm.utils import setup_default_logging, random_seed, get_outdir, unwrap_model
_logger = logging.getLogger('train')
# The first arg parser parses out only the --config argument, this argument is used to
# load a yaml file containing key-values that override the defaults for the main parser below
config_parser = parser = argparse.ArgumentParser(description='Training Config', add_help=False)
parser.add_argument('-c', '--config', default='', type=str, metavar='FILE',
help='YAML config file specifying default arguments')
parser = argparse.ArgumentParser(description='PyTorch ImageNet Training')
# Dataset parameters
parser.add_argument('data_dir', metavar='DIR',
help='path to dataset')
parser.add_argument('--dataset', '-d', metavar='NAME', default='',
help='dataset type (default: ImageFolder/ImageTar if empty)')
parser.add_argument('--train-split', metavar='NAME', default='train',
help='dataset train split (default: train)')
parser.add_argument('--val-split', metavar='NAME', default='validation',
help='dataset validation split (default: validation)')
parser.add_argument('--dataset-download', action='store_true', default=False,
help='Allow download of dataset for torch/ and tfds/ datasets that support it.')
parser.add_argument('--class-map', default='', type=str, metavar='FILENAME',
help='path to class to idx mapping file (default: "")')
# Model parameters
parser.add_argument('--model', default='resnet50', type=str, metavar='MODEL',
help='Name of model to train (default: "resnet50"')
parser.add_argument('--pretrained', action='store_true', default=False,
help='Start with pretrained version of specified network (if avail)')
parser.add_argument('--initial-checkpoint', default='', type=str, metavar='PATH',
help='Initialize model from this checkpoint (default: none)')
parser.add_argument('--resume', default='', type=str, metavar='PATH',
help='Resume full model and optimizer state from checkpoint (default: none)')
parser.add_argument('--no-resume-opt', action='store_true', default=False,
help='prevent resume of optimizer state when resuming model')
parser.add_argument('--num-classes', type=int, default=None, metavar='N',
help='number of label classes (Model default if None)')
parser.add_argument('--gp', default=None, type=str, metavar='POOL',
help='Global pool type, one of (fast, avg, max, avgmax, avgmaxc). Model default if None.')
parser.add_argument('--img-size', type=int, default=None, metavar='N',
help='Image patch size (default: None => model default)')
parser.add_argument('--input-size', default=None, nargs=3, type=int,
metavar='N N N', help='Input all image dimensions (d h w, e.g. --input-size 3 224 224), uses model default if empty')
parser.add_argument('--crop-pct', default=None, type=float,
metavar='N', help='Input image center crop percent (for validation only)')
parser.add_argument('--mean', type=float, nargs='+', default=None, metavar='MEAN',
help='Override mean pixel value of dataset')
parser.add_argument('--std', type=float, nargs='+', default=None, metavar='STD',
help='Override std deviation of dataset')
parser.add_argument('--interpolation', default='', type=str, metavar='NAME',
help='Image resize interpolation type (overrides model)')
parser.add_argument('-b', '--batch-size', type=int, default=256, metavar='N',
help='input batch size for training (default: 32)')
parser.add_argument('-vb', '--validation-batch-size', type=int, default=None, metavar='N',
help='validation batch size override (default: None)')
parser.add_argument('--channels-last', action='store_true', default=False,
help='Use channels_last memory layout')
parser.add_argument('--torchscript', dest='torchscript', action='store_true',
help='torch.jit.script the full model')
parser.add_argument('--grad-checkpointing', action='store_true', default=False,
help='Enable gradient checkpointing through model blocks/stages')
# Optimizer parameters
parser.add_argument('--opt', default='rmsproptf', type=str, metavar='OPTIMIZER',
help='Optimizer (default: "sgd"')
parser.add_argument('--opt-eps', default=None, type=float, metavar='EPSILON',
help='Optimizer Epsilon (default: None, use opt default)')
parser.add_argument('--opt-betas', default=None, type=float, nargs='+', metavar='BETA',
help='Optimizer Betas (default: None, use opt default)')
parser.add_argument('--momentum', type=float, default=0.9, metavar='M',
help='Optimizer momentum (default: 0.9)')
parser.add_argument('--weight-decay', type=float, default=0.00002,
help='weight decay (default: 0.0001)')
parser.add_argument('--clip-grad', type=float, default=None, metavar='NORM',
help='Clip gradient norm (default: None, no clipping)')
parser.add_argument('--clip-mode', type=str, default='norm',
help='Gradient clipping mode. One of ("norm", "value", "agc")')
parser.add_argument('--layer-decay', type=float, default=None,
help='layer-wise learning rate decay (default: None)')
# Learning rate schedule parameters
parser.add_argument('--sched', default='step', type=str, metavar='SCHEDULER',
help='LR scheduler (default: "cosine"')
parser.add_argument('--lr', type=float, default=0.016, metavar='LR',
help='learning rate (default: None => --lr-base')
parser.add_argument('--lr-base', type=float, default=0.1, metavar='LR',
help='base learning rate: lr = lr_base * global_batch_size / base_size')
parser.add_argument('--lr-base-size', type=int, default=256, metavar='DIV',
help='base learning rate batch size (divisor, default: 256).')
parser.add_argument('--lr-base-scale', type=str, default='', metavar='SCALE',
help='base learning rate vs batch_size scaling ("linear", "sqrt", based on opt if empty)')
parser.add_argument('--lr-noise', type=float, nargs='+', default=None, metavar='pct, pct',
help='learning rate noise on/off epoch percentages')
parser.add_argument('--lr-noise-pct', type=float, default=0.67, metavar='PERCENT',
help='learning rate noise limit percent (default: 0.67)')
parser.add_argument('--lr-noise-std', type=float, default=1.0, metavar='STDDEV',
help='learning rate noise std-dev (default: 1.0)')
parser.add_argument('--lr-cycle-mul', type=float, default=1.0, metavar='MULT',
help='learning rate cycle len multiplier (default: 1.0)')
parser.add_argument('--lr-cycle-decay', type=float, default=0.5, metavar='MULT',
help='amount to decay each learning rate cycle (default: 0.5)')
parser.add_argument('--lr-cycle-limit', type=int, default=1, metavar='N',
help='learning rate cycle limit, cycles enabled if > 1')
parser.add_argument('--lr-k-decay', type=float, default=1.0,
help='learning rate k-decay for cosine/poly (default: 1.0)')
parser.add_argument('--warmup-lr', type=float, default=0.0001, metavar='LR',
help='warmup learning rate (default: 0.0001)')
parser.add_argument('--min-lr', type=float, default=1e-6, metavar='LR',
help='lower lr bound for cyclic schedulers that hit 0 (1e-5)')
parser.add_argument('--epochs', type=int, default=300, metavar='N',
help='number of epochs to train (default: 300)')
parser.add_argument('--epoch-repeats', type=float, default=0., metavar='N',
help='epoch repeat multiplier (number of times to repeat dataset epoch per train epoch).')
parser.add_argument('--start-epoch', default=None, type=int, metavar='N',
help='manual epoch number (useful on restarts)')
parser.add_argument('--decay-epochs', type=float, default=2, metavar='N',
help='epoch interval to decay LR')
parser.add_argument('--warmup-epochs', type=int, default=3, metavar='N',
help='epochs to warmup LR, if scheduler supports')
parser.add_argument('--cooldown-epochs', type=int, default=10, metavar='N',
help='epochs to cooldown LR at min_lr, after cyclic schedule ends')
parser.add_argument('--patience-epochs', type=int, default=10, metavar='N',
help='patience epochs for Plateau LR scheduler (default: 10')
parser.add_argument('--decay-rate', '--dr', type=float, default=0.98, metavar='RATE',
help='LR decay rate (default: 0.1)')
# Augmentation & regularization parameters
parser.add_argument('--no-aug', action='store_true', default=False,
help='Disable all training augmentation, override other train aug args')
parser.add_argument('--scale', type=float, nargs='+', default=[0.08, 1.0], metavar='PCT',
help='Random resize scale (default: 0.08 1.0)')
parser.add_argument('--ratio', type=float, nargs='+', default=[3./4., 4./3.], metavar='RATIO',
help='Random resize aspect ratio (default: 0.75 1.33)')
parser.add_argument('--hflip', type=float, default=0.5,
help='Horizontal flip training aug probability')
parser.add_argument('--vflip', type=float, default=0.,
help='Vertical flip training aug probability')
parser.add_argument('--color-jitter', type=float, default=0.4, metavar='PCT',
help='Color jitter factor (default: 0.4)')
parser.add_argument('--aa', type=str, default="original", metavar='NAME',
help='Use AutoAugment policy. "v0" or "original". (default: None)'),
parser.add_argument('--aug-splits', type=int, default=0,
help='Number of augmentation splits (default: 0, valid: 0 or >=2)')
parser.add_argument('--jsd-loss', action='store_true', default=False,
help='Enable Jensen-Shannon Divergence + CE loss. Use with `--aug-splits`.')
parser.add_argument('--bce-loss', action='store_true', default=False,
help='Enable BCE loss w/ Mixup/CutMix use.')
parser.add_argument('--bce-target-thresh', type=float, default=None,
help='Threshold for binarizing softened BCE targets (default: None, disabled)')
parser.add_argument('--reprob', type=float, default=0., metavar='PCT',
help='Random erase prob (default: 0.)')
parser.add_argument('--remode', type=str, default='pixel',
help='Random erase mode (default: "pixel")')
parser.add_argument('--recount', type=int, default=1,
help='Random erase count (default: 1)')
parser.add_argument('--resplit', action='store_true', default=False,
help='Do not random erase first (clean) augmentation split')
parser.add_argument('--mixup', type=float, default=0.0,
help='mixup alpha, mixup enabled if > 0. (default: 0.)')
parser.add_argument('--cutmix', type=float, default=0.0,
help='cutmix alpha, cutmix enabled if > 0. (default: 0.)')
parser.add_argument('--cutmix-minmax', type=float, nargs='+', default=None,
help='cutmix min/max ratio, overrides alpha and enables cutmix if set (default: None)')
parser.add_argument('--mixup-prob', type=float, default=1.0,
help='Probability of performing mixup or cutmix when either/both is enabled')
parser.add_argument('--mixup-switch-prob', type=float, default=0.5,
help='Probability of switching to cutmix when both mixup and cutmix enabled')
parser.add_argument('--mixup-mode', type=str, default='batch',
help='How to apply mixup/cutmix params. Per "batch", "pair", or "elem"')
parser.add_argument('--mixup-off-epoch', default=0, type=int, metavar='N',
help='Turn off mixup after this epoch, disabled if 0 (default: 0)')
parser.add_argument('--smoothing', type=float, default=0.1,
help='Label smoothing (default: 0.1)')
parser.add_argument('--train-interpolation', type=str, default='random',
help='Training interpolation (random, bilinear, bicubic default: "random")')
parser.add_argument('--drop', type=float, default=0.0, metavar='PCT',
help='Dropout rate (default: 0.)')
parser.add_argument('--drop-connect', type=float, default=None, metavar='PCT',
help='Drop connect rate, DEPRECATED, use drop-path (default: None)')
parser.add_argument('--drop-path', type=float, default=None, metavar='PCT',
help='Drop path rate (default: None)')
parser.add_argument('--drop-block', type=float, default=None, metavar='PCT',
help='Drop block rate (default: None)')
# Batch norm parameters (only works with gen_efficientnet based models currently)
parser.add_argument('--bn-momentum', type=float, default=None,
help='BatchNorm momentum override (if not None)')
parser.add_argument('--bn-eps', type=float, default=None,
help='BatchNorm epsilon override (if not None)')
parser.add_argument('--sync-bn', action='store_true',
help='Enable NVIDIA Apex or Torch synchronized BatchNorm.')
parser.add_argument('--dist-bn', type=str, default='reduce',
help='Distribute BatchNorm stats between nodes after each epoch ("broadcast", "reduce", or "")')
parser.add_argument('--split-bn', action='store_true',
help='Enable separate BN layers per augmentation split.')
# Model Exponential Moving Average
parser.add_argument('--model-ema', action='store_true', default=False,
help='Enable tracking moving average of model weights')
parser.add_argument('--model-ema-decay', type=float, default=0.9998,
help='decay factor for model weights moving average (default: 0.9998)')
# Misc
parser.add_argument('--seed', type=int, default=42, metavar='S',
help='random seed (default: 42)')
parser.add_argument('--log-interval', type=int, default=50, metavar='N',
help='how many batches to wait before logging training status')
parser.add_argument('--recovery-interval', type=int, default=0, metavar='N',
help='how many batches to wait before writing recovery checkpoint')
parser.add_argument('--checkpoint-hist', type=int, default=10, metavar='N',
help='number of checkpoints to keep (default: 10)')
parser.add_argument('-j', '--workers', type=int, default=4, metavar='N',
help='how many training processes to use (default: 1)')
parser.add_argument('--save-images', action='store_true', default=False,
help='save images of input bathes every log interval for debugging')
parser.add_argument('--amp', action='store_true', default=False,
help='use NVIDIA Apex AMP or Native AMP for mixed precision training')
parser.add_argument('--pin-mem', action='store_true', default=True,
help='Pin CPU memory in DataLoader for more efficient (sometimes) transfer to GPU.')
parser.add_argument('--output', default='', type=str, metavar='PATH',
help='path to output folder (default: none, current dir)')
parser.add_argument('--experiment', default='', type=str, metavar='NAME',
help='name of train experiment, name of sub-folder for output')
parser.add_argument('--eval-metric', default='top1', type=str, metavar='EVAL_METRIC',
help='Best metric (default: "top1"')
parser.add_argument('--tta', type=int, default=0, metavar='N',
help='Test/inference time augmentation (oversampling) factor. 0=None (default: 0)')
parser.add_argument("--local_rank", default=0, type=int)
parser.add_argument('--use-multi-epochs-loader', action='store_true', default=False,
help='use the multi-epochs-loader to save time at the beginning of every epoch')
parser.add_argument('--force-cpu', action='store_true', default=False,
help='Force CPU to be used even if HW accelerator exists.')
parser.add_argument('--log-wandb', action='store_true', default=False,
help='log training and validation metrics to wandb')
def _parse_args():
# Do we have a config file to parse?
args_config, remaining = config_parser.parse_known_args()
if args_config.config:
with open(args_config.config, 'r') as f:
cfg = yaml.safe_load(f)
parser.set_defaults(**cfg)
# The main arg parser parses the rest of the args, the usual
# defaults will have been overridden if config file specified.
args = parser.parse_args(remaining)
# Cache the args as a text string to save them in the output dir later
args_text = yaml.safe_dump(args.__dict__, default_flow_style=False)
return args, args_text
def main():
setup_default_logging()
args, args_text = _parse_args()
dev_env = initialize_device(force_cpu=args.force_cpu, amp=args.amp, channels_last=args.channels_last)
if dev_env.distributed:
_logger.info('Training in distributed mode with multiple processes, 1 device per process. Process %d, total %d.'
% (dev_env.global_rank, dev_env.world_size))
else:
_logger.info('Training with a single process on 1 device.')
random_seed(args.seed, 0) # Set all random seeds the same for model/state init (mandatory for XLA)
mixup_active = args.mixup > 0 or args.cutmix > 0. or args.cutmix_minmax is not None
assert args.aug_splits == 0 or args.aug_splits > 1, 'A split of 1 makes no sense'
train_state = setup_train_task(args, dev_env, mixup_active)
train_cfg = train_state.train_cfg
# Set random seeds across ranks differently for train
# FIXME perhaps keep the same and just set diff seeds for dataloader worker process? what about TFDS?
random_seed(args.seed, dev_env.global_rank)
data_config, loader_eval, loader_train = setup_data(
args,
unwrap_model(train_state.model).default_cfg,
dev_env,
mixup_active)
# setup checkpoint manager
eval_metric = args.eval_metric
best_metric = None
best_epoch = None
checkpoint_manager = None
output_dir = None
if dev_env.primary:
if args.experiment:
exp_name = args.experiment
else:
exp_name = '-'.join([
datetime.now().strftime("%Y%m%d-%H%M%S"),
safe_model_name(args.model),
str(data_config['input_size'][-1])
])
output_dir = get_outdir(args.output if args.output else './output/train', exp_name)
checkpoint_manager = CheckpointManager(
hparams=vars(args),
checkpoint_dir=output_dir,
recovery_dir=output_dir,
metric_name=eval_metric,
metric_decreasing=True if eval_metric == 'loss' else False,
max_history=args.checkpoint_hist)
with open(os.path.join(output_dir, 'args.yaml'), 'w') as f:
f.write(args_text)
services = TrainServices(
monitor=Monitor(
output_dir=output_dir,
logger=_logger,
hparams=vars(args),
output_enabled=dev_env.primary,
experiment_name=args.experiment,
),
checkpoint=checkpoint_manager,
)
try:
for epoch in range(train_state.epoch, train_cfg.num_epochs):
if dev_env.distributed and hasattr(loader_train.sampler, 'set_epoch'):
loader_train.sampler.set_epoch(epoch)
if args.mixup_off_epoch and epoch >= args.mixup_off_epoch:
if loader_train.mixup_enabled:
loader_train.mixup_enabled = False
train_metrics = train_one_epoch(
state=train_state,
services=services,
loader=loader_train,
dev_env=dev_env,
)
if dev_env.distributed and args.dist_bn in ('broadcast', 'reduce'):
if dev_env.primary:
_logger.info("Distributing BatchNorm running means and vars")
distribute_bn(train_state.model, args.dist_bn == 'reduce', dev_env)
eval_metrics = evaluate(
train_state.model,
train_state.eval_loss,
loader_eval,
services.monitor,
dev_env)
if train_state.model_ema is not None:
if dev_env.distributed and args.dist_bn in ('broadcast', 'reduce'):
distribute_bn(train_state.model_ema, args.dist_bn == 'reduce', dev_env)
ema_eval_metrics = evaluate(
train_state.model_ema.module,
train_state.eval_loss,
loader_eval,
services.monitor,
dev_env,
phase_suffix='EMA')
eval_metrics = ema_eval_metrics
if train_state.lr_scheduler is not None:
# step LR for next epoch
train_state.lr_scheduler.step(epoch + 1, eval_metrics[eval_metric])
if services.monitor is not None:
services.monitor.write_summary(
index=epoch,
results=dict(train=train_metrics, eval=eval_metrics))
if checkpoint_manager is not None:
# save proper checkpoint with eval metric
best_checkpoint = checkpoint_manager.save_checkpoint(train_state, eval_metrics)
best_metric, best_epoch = best_checkpoint.sort_key, best_checkpoint.epoch
train_state = replace(train_state, epoch=epoch + 1)
except KeyboardInterrupt:
pass
if best_metric is not None:
_logger.info('*** Best metric: {0} (epoch {1})'.format(best_metric, best_epoch))
def setup_train_task(args, dev_env: DeviceEnv, mixup_active: bool):
model = create_model(
args.model,
pretrained=args.pretrained,
num_classes=args.num_classes,
drop_rate=args.drop,
drop_connect_rate=args.drop_connect, # DEPRECATED, use drop_path
drop_path_rate=args.drop_path,
drop_block_rate=args.drop_block,
global_pool=args.gp,
bn_momentum=args.bn_momentum,
bn_eps=args.bn_eps,
scriptable=args.torchscript,
checkpoint_path=args.initial_checkpoint)
if args.num_classes is None:
assert hasattr(model, 'num_classes'), 'Model must have `num_classes` attr if not set on cmd line/config.'
args.num_classes = model.num_classes # FIXME handle model default vs config num_classes more elegantly
if args.grad_checkpointing:
model.set_grad_checkpointing(enable=True)
if dev_env.primary:
_logger.info(
f'Model {safe_model_name(args.model)} created, param count:{sum([m.numel() for m in model.parameters()])}')
# enable split bn (separate bn stats per batch-portion)
if args.split_bn:
assert args.aug_splits > 1
model = convert_splitbn_model(model, max(args.aug_splits, 2))
if args.lr is None:
global_batch_size = args.batch_size * dev_env.world_size
batch_ratio = global_batch_size / args.lr_base_size
if not args.lr_base_scale:
on = args.opt.lower()
args.lr_base_scale = 'sqrt' if any([o in on for o in ('adam', 'lamb', 'adabelief')]) else 'linear'
if args.lr_base_scale == 'sqrt':
batch_ratio = batch_ratio ** 0.5
args.lr = args.lr_base * batch_ratio
if dev_env.primary:
_logger.info(f'Learning rate ({args.lr}) calculated from base learning rate ({args.lr_base}) '
f'and global batch size ({global_batch_size}) with {args.lr_base_scale} scaling.')
train_state = setup_model_and_optimizer(
dev_env=dev_env,
model=model,
optimizer=args.opt,
optimizer_cfg=optimizer_kwargs(cfg=args),
clip_fn=args.clip_mode if args.clip_grad is not None else None,
clip_value=args.clip_grad,
model_ema=args.model_ema,
model_ema_decay=args.model_ema_decay,
resume_path=args.resume,
resume_opt=not args.no_resume_opt,
use_syncbn=args.sync_bn,
)
# setup learning rate schedule and starting epoch
# FIXME move into updater?
lr_scheduler, num_epochs = create_scheduler(args, train_state.updater.optimizer)
if lr_scheduler is not None and train_state.epoch > 0:
lr_scheduler.step(train_state.epoch)
# setup loss function
if args.jsd_loss:
assert args.aug_splits > 1 # JSD only valid with aug splits set
train_loss_fn = JsdCrossEntropy(num_splits=args.aug_splits, smoothing=args.smoothing)
elif mixup_active:
# smoothing is handled with mixup target transform
if args.bce_loss:
train_loss_fn = BinaryCrossEntropy(target_threshold=args.bce_target_thresh)
else:
train_loss_fn = SoftTargetCrossEntropy()
elif args.smoothing:
if args.bce_loss:
train_loss_fn = BinaryCrossEntropy(smoothing=args.smoothing, target_threshold=args.bce_target_thresh)
else:
train_loss_fn = LabelSmoothingCrossEntropy(smoothing=args.smoothing)
else:
train_loss_fn = nn.CrossEntropyLoss()
eval_loss_fn = nn.CrossEntropyLoss()
dev_env.to_device(train_loss_fn, eval_loss_fn)
if dev_env.primary:
_logger.info('Scheduled epochs: {}'.format(num_epochs))
train_cfg = TrainCfg(
num_epochs=num_epochs,
log_interval=args.log_interval,
recovery_interval=args.recovery_interval,
)
train_state = replace(
train_state,
lr_scheduler=lr_scheduler,
train_loss=train_loss_fn,
eval_loss=eval_loss_fn,
train_cfg=train_cfg,
)
return train_state
def setup_data(args, default_cfg, dev_env: DeviceEnv, mixup_active: bool):
data_config = resolve_data_config(vars(args), default_cfg=default_cfg, verbose=dev_env.primary)
# create the train and eval datasets
dataset_train = create_dataset(
name=args.dataset, root=args.data_dir, split=args.train_split, is_training=True,
class_map=args.class_map,
download=args.dataset_download,
batch_size=args.batch_size,
repeats=args.epoch_repeats)
dataset_eval = create_dataset(
name=args.dataset, root=args.data_dir, split=args.val_split, is_training=False,
class_map=args.class_map,
download=args.dataset_download,
batch_size=args.batch_size)
# setup mixup / cutmix
mixup_cfg = None
if mixup_active:
mixup_cfg = MixupCfg(
prob=args.mixup_prob, switch_prob=args.mixup_switch_prob, mode=args.mixup_mode,
mixup_alpha=args.mixup, cutmix_alpha=args.cutmix, cutmix_minmax=args.cutmix_minmax,
label_smoothing=args.smoothing, num_classes=args.num_classes)
# wrap dataset in AugMix helper
if args.aug_splits > 1:
dataset_train = AugMixDataset(dataset_train, num_splits=args.aug_splits)
# create data loaders w/ augmentation pipeiine
train_interpolation = args.train_interpolation
if args.no_aug or not train_interpolation:
train_interpolation = data_config['interpolation']
if args.no_aug:
train_aug_cfg = None
else:
train_aug_cfg = AugCfg(
re_prob=args.reprob,
re_mode=args.remode,
re_count=args.recount,
ratio_range=args.ratio,
scale_range=args.scale,
hflip_prob=args.hflip,
vflip_prob=args.vflip,
color_jitter=args.color_jitter,
auto_augment=args.aa,
num_aug_splits=args.aug_splits,
)
train_pp_cfg = PreprocessCfg(
input_size=data_config['input_size'],
interpolation=train_interpolation,
crop_pct=data_config['crop_pct'],
mean=data_config['mean'],
std=data_config['std'],
aug=train_aug_cfg,
)
# if using PyTorch XLA and RandomErasing is enabled, we must normalize and do RE in transforms on CPU
normalize_in_transform = dev_env.type_xla and args.reprob > 0
loader_train = create_loader_v2(
dataset_train,
batch_size=args.batch_size,
is_training=True,
pp_cfg=train_pp_cfg,
mix_cfg=mixup_cfg,
normalize_in_transform=normalize_in_transform,
num_workers=args.workers,
pin_memory=args.pin_mem,
use_multi_epochs_loader=args.use_multi_epochs_loader
)
eval_pp_cfg = PreprocessCfg(
input_size=data_config['input_size'],
interpolation=data_config['interpolation'],
crop_pct=data_config['crop_pct'],
mean=data_config['mean'],
std=data_config['std'],
)
eval_workers = args.workers
if 'tfds' in args.dataset or 'wds' in args.dataset:
# FIXME reduces validation padding issues when using TFDS w/ workers and distributed training
eval_workers = min(2, args.workers)
loader_eval = create_loader_v2(
dataset_eval,
batch_size=args.validation_batch_size or args.batch_size,
is_training=False,
pp_cfg=eval_pp_cfg,
normalize_in_transform=normalize_in_transform,
num_workers=eval_workers,
pin_memory=args.pin_mem,
)
return data_config, loader_eval, loader_train
def train_one_epoch(
state: TrainState,
services: TrainServices,
loader,
dev_env: DeviceEnv,
):
tracker = Tracker()
loss_meter = AvgTensor() # FIXME move loss meter into task specific TaskMetric
state.model.train()
state.updater.reset() # zero-grad
step_end_idx = len(loader) - 1
tracker.mark_iter()
for step_idx, (sample, target) in enumerate(loader):
tracker.mark_iter_data_end()
# FIXME move forward + loss into model 'task' wrapper
with dev_env.autocast():
output = state.model(sample)
loss = state.train_loss(output, target)
state.updater.apply(loss)
tracker.mark_iter_step_end()
state.updater.after_step(
after_train_step,
state,
services,
dev_env,
step_idx,
step_end_idx,
tracker,
loss_meter,
(output, target, loss),
)
tracker.mark_iter()
# end for
if hasattr(state.updater.optimizer, 'sync_lookahead'):
state.updater.optimizer.sync_lookahead()
return OrderedDict([('loss', loss_meter.compute().item())])
def after_train_step(
state: TrainState,
services: TrainServices,
dev_env: DeviceEnv,
step_idx: int,
step_end_idx: int,
tracker: Tracker,
loss_meter: AvgTensor,
tensors: Tuple[torch.Tensor, ...],
):
"""
After the core loss / backward / gradient apply step, we perform all non-gradient related
activities here including updating meters, metrics, performing logging, and writing checkpoints.
Many / most of these operations require tensors to be moved to CPU, they shoud not be done
every step and for XLA use they should be done via the optimizer step_closure. This function includes
everything that should be executed within the step closure.
Args:
state:
services:
dev_env:
step_idx:
step_end_idx:
tracker:
loss_meter:
tensors:
Returns:
"""
last_step = step_idx == step_end_idx
with torch.no_grad():
output, target, loss = tensors
loss_meter.update(loss, output.shape[0])
if state.model_ema is not None:
# FIXME should ema update be included here or in train / updater step? does it matter?
state.model_ema.update(state.model)
state = replace(state, step_count_global=state.step_count_global + 1)
cfg = state.train_cfg
if services.monitor is not None and last_step or (step_idx + 1) % cfg.log_interval == 0:
global_batch_size = dev_env.world_size * output.shape[0]
loss_avg = loss_meter.compute()
if services.monitor is not None:
lr_avg = state.updater.get_average_lr()
services.monitor.log_step(
'Train',
step_idx=step_idx,
step_end_idx=step_end_idx,
epoch=state.epoch,
loss=loss_avg.item(),
rate=(tracker.get_last_iter_rate(global_batch_size), tracker.get_avg_iter_rate(global_batch_size)),
lr=lr_avg,
)
if services.checkpoint is not None and cfg.recovery_interval and (
last_step or (step_idx + 1) % cfg.recovery_interval == 0):
services.checkpoint.save_recovery(state)
if state.lr_scheduler is not None:
# FIXME perform scheduler update here or via updater after_step call?
state.lr_scheduler.step_update(num_updates=state.step_count_global)
def evaluate(
model: nn.Module,
loss_fn: nn.Module,
loader,
logger: Monitor,
dev_env: DeviceEnv,
phase_suffix: str = '',
log_interval: int = 10,
):
tracker = Tracker()
losses_m = AvgTensor()
accuracy_m = AccuracyTopK() # FIXME move loss and accuracy modules into task specific TaskMetric obj
model.eval()
end_idx = len(loader) - 1
tracker.mark_iter()
with torch.no_grad():
for step_idx, (sample, target) in enumerate(loader):
tracker.mark_iter_data_end()
last_step = step_idx == end_idx
with dev_env.autocast():
output = model(sample)
if isinstance(output, (tuple, list)):
output = output[0]
loss = loss_fn(output, target)
# FIXME, explictly marking step for XLA use since I'm not using the parallel xm loader
# need to investigate whether parallel loader wrapper is helpful on tpu-vm or only use for 2-vm setup.
if dev_env.type_xla:
dev_env.mark_step()
elif dev_env.type_cuda:
dev_env.synchronize()
# FIXME uncommenting this fixes race btw model `output` / `loss` and loss_m / accuracy_m meter input
# for PyTorch XLA GPU use.
# This issue does not exist for normal PyTorch w/ GPU (CUDA) or PyTorch XLA w/ TPU.
# loss.item()
tracker.mark_iter_step_end()
losses_m.update(loss, output.size(0))
accuracy_m.update(output, target)
if last_step or step_idx % log_interval == 0:
top1, top5 = accuracy_m.compute().values()
loss_avg = losses_m.compute()
logger.log_step(
'Eval',
step_idx=step_idx,
step_end_idx=end_idx,
loss=loss_avg.item(),
top1=top1.item(),
top5=top5.item(),
phase_suffix=phase_suffix,
)
tracker.mark_iter()
top1, top5 = accuracy_m.compute().values()
results = OrderedDict([('loss', losses_m.compute().item()), ('top1', top1.item()), ('top5', top5.item())])
return results
def _mp_entry(*args):
main()
if __name__ == '__main__':
main()