-
Notifications
You must be signed in to change notification settings - Fork 149
/
numpy_test.py
143 lines (115 loc) · 3.43 KB
/
numpy_test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
#!/home/zkfr/.local/share/virtualenvs/xf-5EfV3Nly/bin/python
#-*- coding:utf-8 -*-
# @author : MaLei
# @datetime : 2018-10-19 13:46
# @file : numpy_test.py
# @software : PyCharm
import numpy as np
# a=np.arange(24)
# print(a.ndim)
# print(a.shape)
# print(a.itemsize)
# a = np.arange(0,60,5)
# for x in np.nditer(a):
# print(x)
# a = np.arange(0,60,5)
# a = a.reshape(3,4)
# b = a.T
# c = b.copy(order='C') #以 C 风格顺序排序
# for x in np.nditer(c):
# print(x)
# c = b.copy(order='F') #以 F 风格顺序排序
# for x in np.nditer(c):
# print(x)
import pandas as pd
# 查看每一列的数据类型
# names = ['Bob','Jessica','Mary','John','Mel','John','Mel']
# births = [968, 155, 77, 578, 973, 578, 973]
# data=list(zip(names,births))
# df=pd.DataFrame(data=data,columns=['names','births'])
# # 查看每一列的数据类型
# print df.dtypes
# # 查看指定列的数据类型
# print df
# d = {'one':[1,1,1,1,1],
# 'two':[2,2,2,2,2],
# 'letter':['a','a','b','b','c']}
#
# # 创建一个 dataframe
# df = pd.DataFrame(d)
# print df
#
# one=df.groupby('letter')
# two=df.groupby(['letter','one']).sum()
# # 不把用来分组的列名作为索引
# three=df.groupby(['letter','one'],as_index=False).sum()
# print one.sum()
# print two
# # 输出索引
# print two.index
# print three.index
# 创建一个 dataframe,用日期作为索引
# States = ['NY', 'NY', 'NY', 'NY', 'FL', 'FL', 'GA', 'GA', 'FL', 'FL']
# # data = [1.0, 2, 3, 4, 5, 6, 7, 8, 9, 10]
# # idx = pd.date_range('1/1/2012', periods=10, freq='MS')
# # df1 = pd.DataFrame(data, index=idx, columns=['Revenue'])
# # df1['State'] = States
# #
# # # 创建第二个 dataframe
# # data2 = [10.0, 10.0, 9, 9, 8, 8, 7, 7, 6, 6]
# # idx2 = pd.date_range('1/1/2013', periods=10, freq='MS')
# # df2 = pd.DataFrame(data2, index=idx2, columns=['Revenue'])
# # df2['State'] = States
# #
# # # 把两个 dataframe 合并起来
# # df = pd.concat([df1,df2])
# # print df
import pymysql
import sys,os
reload(sys)
sys.setdefaultencoding('utf-8')
# sql='SELECT NEWSTITLE,NEWSTYPE FROM WEBNEWS'
# conn=pymysql.connect(host='localhost',
# port=3306,
# user='root',
# passwd='zkyr1006',
# db='news',
# charset='utf8')
# result=pd.read_sql(sql,conn)
# conn.close()
# # 导出为csv格式
# result.to_csv(r'./news.csv',index=False)
# # 导出为txt格式
# result.to_csv(r'./news.txt',index=False)
# # 导出为Excel
# result.to_excel(r'./news.xls',index=False,sheet_name='news')
# # 导出为json
# result.to_json(r'./news.json')
# data=pd.read_excel('news.xls',sheet_name='news',index_col='NEWSTYPE')
# print data
# data=pd.read_json('news.json')
# print data
# df1=pd.DataFrame({'a':[1],'b':['ceshi']})
# print df1
# df1.to_excel('test1.xls',index=False)
# df1.to_excel('test2.xls',index=False)
# df1.to_excel('test3.xls',index=False)
# 定义读取数据的函数
def get_file(locate):
loc=r'./'+locate
# print loc
df=pd.read_excel(loc,0)
df['file']=locate
df.set_index('file')
return df
# 存储所有Excel表的名字
filenames=[]
# 你存放Excel文件的路径可能不一样,需要修改。
os.chdir(r"./")
for files in os.listdir('.'):
if files.endswith('.xls'):
filenames.append(files)
# 创建一个 dataframe 的 list
df_list=[get_file(fname) for fname in filenames]
# 把 list 中所有的 dataframe 合并成一个
big_df=pd.concat(df_list)