VisualStudio Code server images based on https://github.com/cdr/code-server
- Hosted on GitHub Container Registry (ghcr.io) to avoid DockerHub pull limitations, and easily deploy on clusters (such as Kubernetes).
- Additionally installed on the CPU image: Python3, NodeJS (npm, yarn), Java JDK 11, PHP, Fortran
Alternative: jefferyb code-server image for OpenShift
The image on ghcr.io is automatically updated every week (Monday at 3:00 GMT+1) by a GitHub Actions workflow to match the latest
tag of codercom/code-server
This image extends the Dockerfile
defined at https://github.com/cdr/code-server
docker run --rm -it -p 8080:8080 -e PASSWORD=password -v $(pwd):/home/coder/project ghcr.io/maastrichtu-ids/code-server:latest
In the container:
- User, with
sudo
privileges:coder
- Workspace path:
/home/coder
You can also provide the URL of a git repository to be cloned at start, if a requirements.txt
, yarn.lock
or package-lock.json
are present, they will be automatically installed
docker run --rm -it -p 8080:8080 -e PASSWORD=password -e GIT_URL=https://github.com/MaastrichtU-IDS/play-fair ghcr.io/maastrichtu-ids/code-server:latest
Feel free to edit the Dockerfile
to install additional packages in the image.
docker build -t ghcr.io/maastrichtu-ids/code-server:latest .
docker push ghcr.io/maastrichtu-ids/code-server:latest
Images hosted on the GitHub Container Registry: https://github.com/orgs/MaastrichtU-IDS/packages/container/package/code-server-gpu
Based on Docker images provided by Nvidia:
- Tensorflow: https://ngc.nvidia.com/catalog/containers/nvidia:tensorflow
- PyTorch: https://ngc.nvidia.com/catalog/containers/nvidia:pytorch
The best way to update the images is to update the version of the environment variables TENSORFLOW_IMAGE
and PYTORCH_IMAGE
in the publish-docker-gpu.yml
workflow, and push the changes to the main
branch, the new images version will be built and published by GitHub Actions
You can also build the images locally.
Build Tensorflow:
docker build --build-arg NVIDIA_IMAGE=nvcr.io/nvidia/tensorflow:21.05-tf2-py3 -t ghcr.io/maastrichtu-ids/code-server-gpu:tensorflow-21.05-tf2-py3 -f Dockerfile.gpu .
Build PyTorch:
docker build --build-arg NVIDIA_IMAGE=nvcr.io/nvidia/pytorch:21.05-py3 -t ghcr.io/maastrichtu-ids/code-server-gpu:pytorch-21.05-py3 -f Dockerfile.gpu .
Test to run it locally:
docker run -it --rm -p 8081:8081 -e PASSWORD=password ghcr.io/maastrichtu-ids/code-server-gpu:tensorflow-21.05-tf2-py3
Push:
docker push ghcr.io/maastrichtu-ids/code-server-gpu:tensorflow-21.05-tf2-py3