-
Notifications
You must be signed in to change notification settings - Fork 2
/
config.py
89 lines (76 loc) · 2.15 KB
/
config.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
"""MNE-BIDS-Pipeline configuration for natural-conversations-bids.
Run with:
$ mne_bids_pipeline ./config.py
For options, see https://mne.tools/mne-bids-pipeline/stable/settings/general.html.
"""
from pathlib import Path
import platform
study_name = "natural-conversations"
if platform.system() == 'Windows':
analysis_path = Path("E:/M3/Natural_Conversations_study/analysis")
else:
analysis_path = (
Path(__file__).parent / ".." / "Natural_Conversations_study" / "analysis"
)
bids_root = (analysis_path / f'{study_name}-bids').resolve()
interactive = False
sessions = "all"
task = "conversation"
subjects = "all"
exclude_subjects = ["12", "20", "28", "30"]
runs = ["01", "02", "03", "04", "05", "06"]
ch_types = ["meg", "eeg"]
data_type = "meg"
eeg_reference = "average"
l_freq = 0.5
h_freq = 45.0
h_trans_bandwidth = 5
epochs_decim = 5
process_rest = True
regress_artifact = dict(
picks="meg",
picks_artifact=["MISC 001", "MISC 002", "MISC 003"],
)
spatial_filter = 'ssp'
n_proj_ecg = dict(n_mag=2, n_eeg=0)
n_proj_eog = dict(n_mag=1, n_eeg=1)
# Epoching
reject = {'eeg': 150e-6, 'mag': 5000e-15}
conditions = [
"ba",
"da",
"participant_conversation",
"participant_repetition",
"interviewer_conversation",
"interviewer_repetition",
]
epochs_tmin = -1.
epochs_tmax = 1.
baseline = None
# Decoding
contrasts = [
("ba", "da"),
("participant_conversation", "participant_repetition"),
("interviewer_conversation", "interviewer_repetition"),
]
decoding_csp = True
decoding_csp_times = [-1, -0.5, 0, 0.5, 1.0] # before and after
decoding_csp_freqs = {
'theta': [4, 7],
'alpha': [8, 13],
'beta': [14, 30],
'gamma': [31, 45],
}
# TFRs
time_frequency_freq_min = 1
time_frequency_freq_max = 50
time_frequency_baseline = (-1., 1.)
time_frequency_baseline_mode = "logratio"
# Source estimation
run_source_estimation = True
subjects_dir = bids_root / "derivatives" / "freesurfer" / "subjects"
use_template_mri = "fsaverage"
adjust_coreg = True # use head-coord fiducials to align with fsaverage MRI
spacing = "oct6"
inverse_method = "dSPM"
noise_cov = "rest" # rather than the baseline, which will have auditory in it