Skip to content

Latest commit

 

History

History
104 lines (80 loc) · 3.91 KB

README.md

File metadata and controls

104 lines (80 loc) · 3.91 KB

Generative Neural Visual Artist (GeNeVA) - Datasets - Generation Code

Scripts to generate the CoDraw and i-CLEVR datasets used for the GeNeVA task proposed in Tell, Draw, and Repeat: Generating and modifying images based on continual linguistic instruction.

Setup

1. Install Miniconda

wget https://repo.continuum.io/miniconda/Miniconda3-latest-Linux-x86_64.sh
bash Miniconda3-latest-Linux-x86_64.sh
rm Miniconda3-latest-Linux-x86_64.sh

You will now have to restart your shell for the path changes to take effect.

2. Clone the repository

git clone [email protected]:Maluuba/GeNeVA_datasets.git  # use https://github.com/Maluuba/GeNeVA_datasets.git for HTTPS
cd GeNeVA_datasets

3. Create a conda environment for this repository

conda env create -f environment.yml

4. Activate the environment

source activate geneva

5. Download external data files

./scripts/download_data.sh

6. Download GeNeVA data files to the repository

Download the GeNeVA zip file and extract it as specified below:

  • GeNeVA-v1.zip
    unzip GeNeVA-v1.zip
    
    Please review the LICENSE for the GeNeVA zip file in the extracted GeNeVA-v1 folder
  • data.rar: pre-generated data files for both datasets
    rar x GeNeVA-v1/data.rar ./  # `sudo apt-get install rar` if rar is not installed
    
  • CoDraw_images.rar: CoDraw images for each scene's json
    rar x GeNeVA-v1/CoDraw_images.rar raw-data/CoDraw
    
  • i-CLEVR.rar: i-CLEVR scene images, scene jsons, background image
    rar x GeNeVA-v1/i-CLEVR.rar raw-data/
    

7. Generate dataset HDF5 files

  • Vocabulary
    python scripts/joint_codraw_iclevr/generate_glove_file.py
    
  • CoDraw
    python scripts/codraw_dataset_generation/codraw_add_data_to_raw.py
    python scripts/codraw_dataset_generation/codraw_raw_to_hdf5.py       # dataset for GeNeVA-GAN
    python scripts/codraw_dataset_generation/codraw_object_detection.py  # dataset for Object Detector & Localizer
    
  • i-CLEVR
    python scripts/iclevr_dataset_generation/iclevr_add_data_to_raw.py
    python scripts/iclevr_dataset_generation/iclevr_raw_to_hdf5.py       # dataset for GeNeVA-GAN
    python scripts/iclevr_dataset_generation/iclevr_object_detection.py  # dataset for Object Detector & Localizer
    

8. (Optional) Downloaded data can now be deleted

rm raw-data/ -rf
rm GeNeVA-v1/ -rf
rm GeNeVA-v1.zip

Reference

If you use this code or the GeNeVA datasets as part of any published research, please cite the following paper:

Alaaeldin El-Nouby, Shikhar Sharma, Hannes Schulz, Devon Hjelm, Layla El Asri, Samira Ebrahimi Kahou, Yoshua Bengio, and Graham W. Taylor. "Tell, Draw, and Repeat: Generating and modifying images based on continual linguistic instruction" arXiv preprint arXiv:1811.09845 (2018).

@article{elnouby2018tell_draw_repeat,
    author  = {El{-}Nouby, Alaaeldin and Sharma, Shikhar and Schulz, Hannes and Hjelm, Devon and El Asri, Layla and Ebrahimi Kahou, Samira and Bengio, Yoshua and Taylor, Graham W.},
    title   = {Tell, Draw, and Repeat: Generating and modifying images based on continual linguistic instruction},
    journal = {CoRR},
    volume  = {abs/1811.09845},
    year    = {2018},
    url     = {http://arxiv.org/abs/1811.09845},
    archivePrefix = {arXiv},
    eprint  = {1811.09845}
}

Microsoft Open Source Code of Conduct

This project has adopted the Microsoft Open Source Code of Conduct. For more information see the Code of Conduct FAQ or contact [email protected] with any additional questions or comments.

License

See LICENSE.txt.