-
Notifications
You must be signed in to change notification settings - Fork 0
/
dataset.py
155 lines (132 loc) · 5.03 KB
/
dataset.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
"""
Creates a Pytorch dataset to load the Pascal VOC & MS COCO datasets
"""
import config
import numpy as np
import os
import pandas as pd
import torch
from PIL import Image, ImageFile
from torch.utils.data import Dataset, DataLoader
from utils import (
cells_to_bboxes,
iou_width_height as iou,
non_max_suppression as nms,
plot_image,
)
ImageFile.LOAD_TRUNCATED_IMAGES = True
class YOLODataset(Dataset):
def __init__(
self,
csv_file,
img_dir,
label_dir,
anchors,
image_size=416,
S=[13, 26, 52],
C=20,
transform=None,
):
self.annotations = pd.read_csv(csv_file)
self.img_dir = img_dir
self.label_dir = label_dir
self.image_size = image_size
self.transform = transform
self.S = S
self.anchors = torch.tensor(anchors[0] + anchors[1] + anchors[2])
self.num_anchors = self.anchors.shape[0]
self.num_anchors_per_scale = self.num_anchors // 3
self.C = C
self.ignore_iou_thresh = 0.5
def __len__(self):
return len(self.annotations)
def __getitem__(self, index):
# Load image
img_path = os.path.join(self.img_dir, self.annotations.iloc[index, 0])
image = np.array(Image.open(img_path).convert("RGB"))
# Load label
label_path = os.path.join(self.label_dir, self.annotations.iloc[index, 1])
bboxes = np.roll(
np.loadtxt(fname=label_path, delimiter=" ", ndmin=2),
shift=4,
axis=1,
).tolist()
if self.transform:
# print(f"Image file: {img_path}")
# print(f"Label file: {label_path}")
# print("Bboxes before augmentation:")
# for bbox in bboxes:
# print(bbox)
augmentations = self.transform(image=image, bboxes=bboxes)
image = augmentations["image"]
bboxes = augmentations["bboxes"]
# print("Bboxes after augmentation:")
# for bbox in bboxes:
# print(bbox)
targets = [
torch.zeros((self.num_anchors // 3, S, S, 6)) for S in self.S
] # 6 -> [probability_object, x_center, y_center, width, height, class]
for box in bboxes:
iou_anchors = iou(torch.tensor(box[2:4]), self.anchors)
anchor_indices = iou_anchors.argsort(descending=True, dim=0)
x, y, width, height, class_label = box
has_anchor = [False, False, False]
for anchor_idx in anchor_indices:
scale_idx = anchor_idx // self.num_anchors_per_scale
anchor_on_scale = anchor_idx % self.num_anchors_per_scale
S = self.S[scale_idx]
i, j = int(S * y), int(S * x) # which cell
anchor_taken = targets[scale_idx][anchor_on_scale, i, j, 0]
if not anchor_taken and not has_anchor[scale_idx]:
targets[scale_idx][anchor_on_scale, i, j, 0] = 1
x_cell, y_cell = S * x - j, S * y - i # both between [0,1]
width_cell, height_cell = (
width * S,
height * S,
) # can be greater than 1 since it's relative to cell
box_coordinates = torch.tensor(
[x_cell, y_cell, width_cell, height_cell]
)
targets[scale_idx][anchor_on_scale, i, j, 1:5] = box_coordinates
targets[scale_idx][anchor_on_scale, i, j, 5] = int(class_label)
has_anchor[scale_idx] = True
elif (
not anchor_taken
and iou_anchors[anchor_idx] > self.ignore_iou_thresh
):
targets[scale_idx][
anchor_on_scale, i, j, 0
] = -1 # ignore prediction
return image, tuple(targets)
def test():
anchors = config.ANCHORS
transform = config.test_transforms
dataset = YOLODataset(
"/home/marcos/Datasets/COCO/train.csv",
"/home/marcos/Datasets/COCO/images/",
"/home/marcos/Datasets/COCO/labels/",
S=[13, 26, 52],
anchors=anchors,
transform=transform,
)
S = [13, 26, 52]
scaled_anchors = torch.tensor(anchors) / (
1 / torch.tensor(S).unsqueeze(1).unsqueeze(1).repeat(1, 3, 2)
)
loader = DataLoader(dataset=dataset, batch_size=1, shuffle=True)
for x, y in loader:
boxes = []
for i in range(y[0].shape[1]):
anchor = scaled_anchors[i]
print(f"Anchor shape: {anchor.shape}")
print(f"y[i] shape: {y[i].shape}")
boxes += cells_to_bboxes(
y[i], is_preds=False, S=y[i].shape[2], anchors=anchor
)[0]
boxes = nms(boxes, iou_threshold=1, threshold=0.7, box_format="midpoint")
print("Boxes:")
for bbox in boxes:
print(bbox)
plot_image(x[0].permute(1, 2, 0).to("cpu"), boxes)
if __name__ == "__main__":
test()