-
Notifications
You must be signed in to change notification settings - Fork 43
/
test_vectorization.py
463 lines (360 loc) · 20.7 KB
/
test_vectorization.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
import numpy as np
import random
import os
import tensorflow as tf
from six.moves import range
from PIL import Image
import time
import argparse
import hyper_parameters as hparams
from model_common_test import DiffPastingV3, VirtualSketchingModel
from utils import reset_graph, load_checkpoint, update_hyperparams, draw, \
save_seq_data, image_pasting_v3_testing, draw_strokes
from dataset_utils import load_dataset_testing
os.environ['CUDA_VISIBLE_DEVICES'] = '0'
def move_cursor_to_undrawn(current_canvas_list, input_image_, last_min_acc_list, grid_patch_size=128,
stroke_acc_threshold=0.95, stroke_num_threshold=5, continuous_min_acc_threshold=2):
"""
:param current_canvas_list: (select_times, image_size, image_size), [0.0-BG, 1.0-stroke]
:param input_image_: (1, image_size, image_size), [0-stroke, 1-BG]
:return: new_cursor_pos: (select_times, 1, 2), [0.0, 1.0)
"""
def split_images(in_img, image_size, grid_size):
if image_size % grid_size == 0:
paddings_ = 0
else:
paddings_ = grid_size - image_size % grid_size
paddings = [[0, paddings_],
[0, paddings_]]
image_pad = np.pad(in_img, paddings, mode='constant', constant_values=0.0) # (H_p, W_p), [0.0-BG, 1.0-stroke]
assert image_pad.shape[0] % grid_size == 0
split_num = image_pad.shape[0] // grid_size
images_h = np.hsplit(image_pad, split_num)
image_patches = []
for image_h in images_h:
images_v = np.vsplit(image_h, split_num)
image_patches += images_v
image_patches = np.array(image_patches, dtype=np.float32)
return image_patches, split_num
def line_drawing_rounding(line_drawing):
line_drawing_r = np.copy(line_drawing) # [0.0-BG, 1.0-stroke]
line_drawing_r[line_drawing_r != 0.0] = 1.0
return line_drawing_r
def cal_undrawn_pixels(in_canvas, in_sketch):
in_canvas_round = line_drawing_rounding(in_canvas).astype(np.int32) # (N, H, W), [0.0-BG, 1.0-stroke]
in_sketch_round = line_drawing_rounding(in_sketch).astype(np.int32)
intersection = np.bitwise_and(in_canvas_round, in_sketch_round)
intersection_sum = np.sum(intersection, axis=(1, 2))
gt_sum = np.sum(in_sketch_round, axis=(1, 2)) # (N)
undrawn_num = gt_sum - intersection_sum
return undrawn_num
def cal_stroke_acc(in_canvas, in_sketch):
in_canvas_round = line_drawing_rounding(in_canvas).astype(np.int32) # (N, H, W), [0.0-BG, 1.0-stroke]
in_sketch_round = line_drawing_rounding(in_sketch).astype(np.int32)
intersection = np.bitwise_and(in_canvas_round, in_sketch_round)
intersection_sum = np.sum(intersection, axis=(1, 2)).astype(np.float32)
gt_sum = np.sum(in_sketch_round, axis=(1, 2)).astype(np.float32) # (N)
undrawn_num = gt_sum - intersection_sum # (N)
stroke_acc = intersection_sum / gt_sum # (N)
stroke_acc[gt_sum == 0.0] = 1.0
stroke_acc[undrawn_num <= stroke_num_threshold] = 1.0
return stroke_acc
def get_cursor(patch_idx, img_size, grid_size, split_num):
y_pos = patch_idx % split_num
x_pos = patch_idx // split_num
y_top = y_pos * grid_size + grid_size // 4
y_bottom = y_top + grid_size // 2
x_left = x_pos * grid_size + grid_size // 4
x_right = x_left + grid_size // 2
cursor_y = random.randint(y_top, y_bottom)
cursor_x = random.randint(x_left, x_right)
cursor_y = max(0, min(cursor_y, img_size - 1))
cursor_x = max(0, min(cursor_x, img_size - 1)) # (2), in large size
center = np.array([cursor_x, cursor_y], dtype=np.float32)
return center / float(img_size) # (2), in size [0.0, 1.0)
input_image = 1.0 - input_image_[0] # (image_size, image_size), [0-BG, 1-stroke]
img_size = input_image.shape[0]
input_image_patches, split_number = split_images(input_image, img_size, grid_patch_size) # (N, grid_size, grid_size)
new_cursor_pos = []
last_min_acc_list_new = [item for item in last_min_acc_list]
for canvas_i in range(current_canvas_list.shape[0]):
curr_canvas = current_canvas_list[canvas_i] # (image_size, image_size), [0.0-BG, 1.0-stroke]
curr_canvas_patches, _ = split_images(curr_canvas, img_size, grid_patch_size) # (N, grid_size, grid_size)
# 1. detect ending flag by stroke accuracy
stroke_accuracy = cal_stroke_acc(curr_canvas_patches, input_image_patches)
min_acc_idx = np.argmin(stroke_accuracy)
min_acc= stroke_accuracy[min_acc_idx]
# print('min_acc_idx', min_acc_idx, ' | ', 'min_acc', min_acc)
if min_acc >= stroke_acc_threshold: # end of drawing
return None, None
# 2. detect undrawn pixels
undrawn_pixel_num = cal_undrawn_pixels(curr_canvas_patches, input_image_patches)
# undrawn_pixel_num_dis = np.reshape(undrawn_pixel_num, (split_number, split_number)).T
# print('undrawn_pixel_num_dis')
# print(undrawn_pixel_num_dis)
max_undrawn_idx = np.argmax(undrawn_pixel_num)
# max_undrawn = undrawn_pixel_num[max_undrawn_idx]
# print('max_undrawn_idx', max_undrawn_idx, ' | ', 'max_undrawn', max_undrawn)
# 3. select a random position
last_min_acc_idx, last_min_acc_times = last_min_acc_list[canvas_i]
if last_min_acc_times >= continuous_min_acc_threshold and last_min_acc_idx == min_acc_idx:
selected_patch_idx = last_min_acc_idx
new_min_acc_times = 1
else:
selected_patch_idx = max_undrawn_idx
if min_acc_idx == last_min_acc_idx:
new_min_acc_times = last_min_acc_times + 1
else:
new_min_acc_times = 1
new_min_acc_idx = min_acc_idx
last_min_acc_list_new[canvas_i] = (new_min_acc_idx, new_min_acc_times)
# print('selected_patch_idx', selected_patch_idx)
# 4. get cursor according to the selected_patch_idx
rand_cursor = get_cursor(selected_patch_idx, img_size, grid_patch_size, split_number) # (2), in size [0.0, 1.0)
new_cursor_pos.append(rand_cursor)
assert len(new_cursor_pos) == current_canvas_list.shape[0]
new_cursor_pos = np.expand_dims(np.stack(new_cursor_pos, axis=0), axis=1) # (select_times, 1, 2), [0.0, 1.0)
return new_cursor_pos, last_min_acc_list_new
def sample(sess, model, input_photos, init_cursor, image_size, init_len, seq_lens, state_dependent,
pasting_func, round_stop_state_num, stroke_acc_threshold):
"""Samples a sequence from a pre-trained model."""
select_times = 1
curr_canvas = np.zeros(dtype=np.float32,
shape=(select_times, image_size, image_size)) # [0.0-BG, 1.0-stroke]
initial_state = sess.run(model.initial_state)
prev_width = np.stack([model.hps.min_width for _ in range(select_times)], axis=0)
params_list = [[] for _ in range(select_times)]
state_raw_list = [[] for _ in range(select_times)]
state_soft_list = [[] for _ in range(select_times)]
window_size_list = [[] for _ in range(select_times)]
last_min_stroke_acc_list = [(-1, 0) for _ in range(select_times)]
round_cursor_list = []
round_length_real_list = []
input_photos_tiles = np.tile(input_photos, (select_times, 1, 1))
for cursor_i, seq_len in enumerate(seq_lens):
# print('\n')
# print('@@ Round', cursor_i + 1)
if cursor_i == 0:
cursor_pos = np.squeeze(init_cursor, axis=0) # (select_times, 1, 2)
else:
cursor_pos, last_min_stroke_acc_list_updated = \
move_cursor_to_undrawn(curr_canvas, input_photos, last_min_stroke_acc_list,
grid_patch_size=model.hps.raster_size,
stroke_acc_threshold=stroke_acc_threshold) # (select_times, 1, 2)
if cursor_pos is not None:
round_cursor_list.append(cursor_pos)
last_min_stroke_acc_list = last_min_stroke_acc_list_updated
else:
break
prev_state = initial_state
if not model.hps.init_cursor_on_undrawn_pixel:
prev_width = np.stack([model.hps.min_width for _ in range(select_times)], axis=0)
prev_scaling = np.ones((select_times), dtype=np.float32) # (N)
prev_window_size = np.ones((select_times), dtype=np.float32) * model.hps.raster_size # (N)
continuous_one_state_num = 0
for i in range(seq_len):
if not state_dependent and i % init_len == 0:
prev_state = initial_state
curr_window_size = prev_scaling * prev_window_size # (N)
curr_window_size = np.maximum(curr_window_size, model.hps.min_window_size)
curr_window_size = np.minimum(curr_window_size, image_size)
feed = {
model.initial_state: prev_state,
model.input_photo: np.expand_dims(input_photos_tiles, axis=-1),
model.curr_canvas_hard: curr_canvas.copy(),
model.cursor_position: cursor_pos,
model.image_size: image_size,
model.init_width: prev_width,
model.init_scaling: prev_scaling,
model.init_window_size: prev_window_size,
}
o_other_params_list, o_pen_list, o_pred_params_list, next_state_list = \
sess.run([model.other_params, model.pen_ras, model.pred_params, model.final_state], feed_dict=feed)
# o_other_params: (N, 6), o_pen: (N, 2), pred_params: (N, 1, 7), next_state: (N, 1024)
# o_other_params: [tanh*2, sigmoid*2, tanh*2, sigmoid*2]
idx_eos_list = np.argmax(o_pen_list, axis=1) # (N)
output_i = 0
idx_eos = idx_eos_list[output_i]
eos = [0, 0]
eos[idx_eos] = 1
other_params = o_other_params_list[output_i].tolist() # (6)
params_list[output_i].append([eos[1]] + other_params)
state_raw_list[output_i].append(o_pen_list[output_i][1])
state_soft_list[output_i].append(o_pred_params_list[output_i, 0, 0])
window_size_list[output_i].append(curr_window_size[output_i])
# draw the stroke and add to the canvas
x1y1, x2y2, width2 = o_other_params_list[output_i, 0:2], o_other_params_list[output_i, 2:4], \
o_other_params_list[output_i, 4]
x0y0 = np.zeros_like(x2y2) # (2), [-1.0, 1.0]
x0y0 = np.divide(np.add(x0y0, 1.0), 2.0) # (2), [0.0, 1.0]
x2y2 = np.divide(np.add(x2y2, 1.0), 2.0) # (2), [0.0, 1.0]
widths = np.stack([prev_width[output_i], width2], axis=0) # (2)
o_other_params_proc = np.concatenate([x0y0, x1y1, x2y2, widths], axis=-1).tolist() # (8)
if idx_eos == 0:
f = o_other_params_proc + [1.0, 1.0]
pred_stroke_img = draw(f) # (raster_size, raster_size), [0.0-stroke, 1.0-BG]
pred_stroke_img_large = image_pasting_v3_testing(1.0 - pred_stroke_img, cursor_pos[output_i, 0],
image_size,
curr_window_size[output_i],
pasting_func, sess) # [0.0-BG, 1.0-stroke]
curr_canvas[output_i] += pred_stroke_img_large # [0.0-BG, 1.0-stroke]
continuous_one_state_num = 0
else:
continuous_one_state_num += 1
curr_canvas = np.clip(curr_canvas, 0.0, 1.0)
next_width = o_other_params_list[:, 4] # (N)
next_scaling = o_other_params_list[:, 5]
next_window_size = next_scaling * curr_window_size # (N)
next_window_size = np.maximum(next_window_size, model.hps.min_window_size)
next_window_size = np.minimum(next_window_size, image_size)
prev_state = next_state_list
prev_width = next_width * curr_window_size / next_window_size # (N,)
prev_scaling = next_scaling # (N)
prev_window_size = curr_window_size
# update cursor_pos based on hps.cursor_type
new_cursor_offsets = o_other_params_list[:, 2:4] * (np.expand_dims(curr_window_size, axis=-1) / 2.0) # (N, 2), patch-level
new_cursor_offset_next = new_cursor_offsets
# important!!!
new_cursor_offset_next = np.concatenate([new_cursor_offset_next[:, 1:2], new_cursor_offset_next[:, 0:1]], axis=-1)
cursor_pos_large = cursor_pos * float(image_size)
stroke_position_next = cursor_pos_large[:, 0, :] + new_cursor_offset_next # (N, 2), large-level
if model.hps.cursor_type == 'next':
cursor_pos_large = stroke_position_next # (N, 2), large-level
else:
raise Exception('Unknown cursor_type')
cursor_pos_large = np.minimum(np.maximum(cursor_pos_large, 0.0), float(image_size - 1)) # (N, 2), large-level
cursor_pos_large = np.expand_dims(cursor_pos_large, axis=1) # (N, 1, 2)
cursor_pos = cursor_pos_large / float(image_size)
if continuous_one_state_num >= round_stop_state_num or i == seq_len - 1:
round_length_real_list.append(i + 1)
break
return params_list, state_raw_list, state_soft_list, curr_canvas, window_size_list, \
round_cursor_list, round_length_real_list
def main_testing(test_image_base_dir, test_dataset, test_image_name,
sampling_base_dir, model_base_dir, model_name,
sampling_num,
longer_infer_lens,
round_stop_state_num, stroke_acc_threshold,
draw_seq=False, draw_order=False,
state_dependent=True):
model_params_default = hparams.get_default_hparams_clean()
model_params = update_hyperparams(model_params_default, model_base_dir, model_name, infer_dataset=test_dataset)
[test_set, eval_hps_model, sample_hps_model] \
= load_dataset_testing(test_image_base_dir, test_dataset, test_image_name, model_params)
test_image_raw_name = test_image_name[:test_image_name.find('.')]
model_dir = os.path.join(model_base_dir, model_name)
reset_graph()
sampling_model = VirtualSketchingModel(sample_hps_model)
# differentiable pasting graph
paste_v3_func = DiffPastingV3(sample_hps_model.raster_size)
tfconfig = tf.ConfigProto()
tfconfig.gpu_options.allow_growth = True
sess = tf.InteractiveSession(config=tfconfig)
sess.run(tf.global_variables_initializer())
# loads the weights from checkpoint into our model
snapshot_step = load_checkpoint(sess, model_dir, gen_model_pretrain=True)
print('snapshot_step', snapshot_step)
sampling_dir = os.path.join(sampling_base_dir, test_dataset + '__' + model_name)
os.makedirs(sampling_dir, exist_ok=True)
stroke_number_list = []
compute_time_list = []
for sampling_i in range(sampling_num):
start_time_point = time.time()
input_photos, init_cursors, test_image_size = test_set.get_test_image()
# input_photos: (1, image_size, image_size), [0-stroke, 1-BG]
# init_cursors: (1, 1, 2), in size [0.0, 1.0)
print()
print(test_image_name, ', image_size:', test_image_size, ', sampling_i:', sampling_i)
print('Processing ...')
if init_cursors.ndim == 3:
init_cursors = np.expand_dims(init_cursors, axis=0)
input_photos = input_photos[0:1, :, :]
ori_img = (input_photos.copy()[0] * 255.0).astype(np.uint8)
ori_img = np.stack([ori_img for _ in range(3)], axis=2)
ori_img_png = Image.fromarray(ori_img, 'RGB')
ori_img_png.save(os.path.join(sampling_dir, test_image_raw_name + '_input.png'), 'PNG')
data_loading_time_point = time.time()
# decoding for sampling
strokes_raw_out_list, states_raw_out_list, states_soft_out_list, pred_imgs_out, \
window_size_out_list, round_new_cursors, round_new_lengths = sample(
sess, sampling_model, input_photos, init_cursors, test_image_size,
eval_hps_model.max_seq_len, longer_infer_lens, state_dependent,
paste_v3_func, round_stop_state_num, stroke_acc_threshold)
# pred_imgs_out: [0.0-BG, 1.0-stroke]
print('## round_lengths:', len(round_new_lengths), ':', round_new_lengths)
sampling_time_point = time.time()
data_loading_time = data_loading_time_point - start_time_point
sampling_time_total = sampling_time_point - start_time_point
sampling_time_wo_data_loading = sampling_time_point - data_loading_time_point
compute_time_list.append(sampling_time_total)
# print(' >>> data_loading_time', data_loading_time)
print(' >>> sampling_time_total', sampling_time_total)
# print(' >>> sampling_time_wo_data_loading', sampling_time_wo_data_loading)
best_result_idx = 0
strokes_raw_out = np.stack(strokes_raw_out_list[best_result_idx], axis=0)
states_raw_out = states_raw_out_list[best_result_idx]
states_soft_out = states_soft_out_list[best_result_idx]
window_size_out = window_size_out_list[best_result_idx]
multi_cursors = [init_cursors[0, best_result_idx, 0]]
for c_i in range(len(round_new_cursors)):
best_cursor = round_new_cursors[c_i][best_result_idx, 0] # (2)
multi_cursors.append(best_cursor)
assert len(multi_cursors) == len(round_new_lengths)
print('strokes_raw_out', strokes_raw_out.shape)
stroke_number_list.append(strokes_raw_out.shape[0])
clean_states_soft_out = np.array(states_soft_out) # (N)
flag_list = strokes_raw_out[:, 0].astype(np.int32) # (N)
drawing_len = len(flag_list) - np.sum(flag_list)
assert drawing_len >= 0
# print(' flag raw\t soft\t x1\t\t y1\t\t x2\t\t y2\t\t r2\t\t s2')
for i in range(strokes_raw_out.shape[0]):
flag, x1, y1, x2, y2, r2, s2 = strokes_raw_out[i]
win_size = window_size_out[i]
out_format = '#%d: %d | %.4f, %.4f, %.4f, %.4f, %.4f, %.4f, %.4f, %.4f'
out_values = (i, flag, states_raw_out[i], clean_states_soft_out[i], x1, y1, x2, y2, r2, s2)
out_log = out_format % out_values
# print(out_log)
print('Saving results ...')
save_seq_data(sampling_dir, test_image_raw_name + '_' + str(sampling_i),
strokes_raw_out, multi_cursors,
test_image_size, round_new_lengths, eval_hps_model.min_width)
draw_strokes(strokes_raw_out, sampling_dir, test_image_raw_name + '_' + str(sampling_i) + '_pred.png',
ori_img, test_image_size,
multi_cursors, round_new_lengths, eval_hps_model.min_width, eval_hps_model.cursor_type,
sample_hps_model.raster_size, sample_hps_model.min_window_size,
sess,
pasting_func=paste_v3_func,
save_seq=draw_seq, draw_order=draw_order)
average_stroke_number = np.mean(stroke_number_list)
average_compute_time = np.mean(compute_time_list)
print()
print('@@@ Total summary:')
print(' >>> average_stroke_number', average_stroke_number)
print(' >>> average_compute_time', average_compute_time)
def main(model_name, test_image_name, sampling_num):
test_dataset = 'clean_line_drawings'
test_image_base_dir = 'sample_inputs'
sampling_base_dir = 'outputs/sampling'
model_base_dir = 'outputs/snapshot'
state_dependent = False
longer_infer_lens = [500 for _ in range(10)]
round_stop_state_num = 12
stroke_acc_threshold = 0.95
draw_seq = False
draw_color_order = True
# set numpy output to something sensible
np.set_printoptions(precision=8, edgeitems=6, linewidth=200, suppress=True)
main_testing(test_image_base_dir, test_dataset, test_image_name,
sampling_base_dir, model_base_dir, model_name, sampling_num,
draw_seq=draw_seq, draw_order=draw_color_order,
state_dependent=state_dependent, longer_infer_lens=longer_infer_lens,
round_stop_state_num=round_stop_state_num, stroke_acc_threshold=stroke_acc_threshold)
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--input', '-i', type=str, default='', help="The test image name.")
parser.add_argument('--model', '-m', type=str, default='pretrain_clean_line_drawings', help="The trained model.")
parser.add_argument('--sample', '-s', type=int, default=1, help="The number of outputs.")
args = parser.parse_args()
assert args.input != ''
assert args.sample > 0
main(args.model, args.input, args.sample)