-
Notifications
You must be signed in to change notification settings - Fork 1
/
merge_data_Haar_m.m
32 lines (25 loc) · 945 Bytes
/
merge_data_Haar_m.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
% Concatenate different data sets
% dataCliff array is indexed as follows: dataCliff(samples,idx,numQ,etaPower)
% Each array entry is the Frobenius norm of the error of the reconstructed
% Choi matrix
clear
run1 = load('Haar_m01/dataBerlin.mat');
run2 = load('Haar_m02/dataBerlin.mat');
% run3 =
rps = 50;
data = struct;
% dims: (m,reps,numQ=3,eta)
data.frob_norm = run1.data.frob_norm(:,1:rps,:,:);
data.frob_norm(:,rps+1:2*rps,:,:) = run2.data.frob_norm(:,1:rps,:,:);
reps = 2*rps;
data.cvx_optval = run1.data.cvx_optval(:,1:rps,:,:);
data.cvx_optval(:,rps+1:2*rps,:,:) = run2.data.cvx_optval(:,1:rps,:,:);
data.cvxReps = run1.data.cvxReps(:,1:rps,:,:);
data.cvxReps(:,rps+1:2*rps,:,:) = run1.data.cvxReps(:,1:rps,:,:);
display(['Nr. failed reconstructions: ',...
num2str( sum(isnan(data.cvx_optval(:))) ),...
' out of ',...
num2str( length(data.cvx_optval(:)) )])
m_list = run1.m_list;
eta_list = run1.eta_list;
save('Haar_m01_02')