-
Notifications
You must be signed in to change notification settings - Fork 6
/
train.py
261 lines (234 loc) · 10.4 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
import copy as cp
import os.path as osp
import torch
from mmcv.parallel import MMDataParallel, MMDistributedDataParallel
from mmcv.runner import (DistSamplerSeedHook, EpochBasedRunner, OptimizerHook,
build_optimizer, get_dist_info)
from mmcv.runner.hooks import Fp16OptimizerHook
from ..core import (DistEvalHook, EvalHook, OmniSourceDistSamplerSeedHook,
OmniSourceRunner)
from ..datasets import build_dataloader, build_dataset
from ..utils import PreciseBNHook, get_root_logger
from .test import multi_gpu_test
from mmcv_custom.runner import EpochBasedRunnerAmp
import apex
import os.path as osp
def train_model(model,
dataset,
cfg,
distributed=False,
validate=False,
test=dict(test_best=False, test_last=False),
timestamp=None,
meta=None):
"""Train model entry function.
Args:
model (nn.Module): The model to be trained.
dataset (:obj:`Dataset`): Train dataset.
cfg (dict): The config dict for training.
distributed (bool): Whether to use distributed training.
Default: False.
validate (bool): Whether to do evaluation. Default: False.
test (dict): The testing option, with two keys: test_last & test_best.
The value is True or False, indicating whether to test the
corresponding checkpoint.
Default: dict(test_best=False, test_last=False).
timestamp (str | None): Local time for runner. Default: None.
meta (dict | None): Meta dict to record some important information.
Default: None
"""
logger = get_root_logger(log_level=cfg.log_level)
# prepare data loaders
dataset = dataset if isinstance(dataset, (list, tuple)) else [dataset]
if 'optimizer_config' not in cfg:
cfg.optimizer_config={}
dataloader_setting = dict(
videos_per_gpu=cfg.data.get('videos_per_gpu', 1) // cfg.optimizer_config.get('update_interval', 1),
workers_per_gpu=cfg.data.get('workers_per_gpu', 1),
num_gpus=len(cfg.gpu_ids),
dist=distributed,
seed=cfg.seed)
dataloader_setting = dict(dataloader_setting,
**cfg.data.get('train_dataloader', {}))
if cfg.omnisource:
# The option can override videos_per_gpu
train_ratio = cfg.data.get('train_ratio', [1] * len(dataset))
omni_videos_per_gpu = cfg.data.get('omni_videos_per_gpu', None)
if omni_videos_per_gpu is None:
dataloader_settings = [dataloader_setting] * len(dataset)
else:
dataloader_settings = []
for videos_per_gpu in omni_videos_per_gpu:
this_setting = cp.deepcopy(dataloader_setting)
this_setting['videos_per_gpu'] = videos_per_gpu
dataloader_settings.append(this_setting)
data_loaders = [
build_dataloader(ds, **setting)
for ds, setting in zip(dataset, dataloader_settings)
]
else:
data_loaders = [
build_dataloader(ds, **dataloader_setting) for ds in dataset
]
# build runner
optimizer = build_optimizer(model, cfg.optimizer)
# use apex fp16 optimizer
# Noticed that this is just a temporary patch. We shoud not encourage this kind of code style
use_amp = False
if (
cfg.optimizer_config.get("type", None)
and cfg.optimizer_config["type"] == "DistOptimizerHook"
):
if cfg.optimizer_config.get("use_fp16", False):
model, optimizer = apex.amp.initialize(
model.cuda(), optimizer, opt_level="O1"
)
for m in model.modules():
if hasattr(m, "fp16_enabled"):
m.fp16_enabled = True
use_amp = True
# put model on gpus
if distributed:
find_unused_parameters = cfg.get('find_unused_parameters', True)
# Sets the `find_unused_parameters` parameter in
# torch.nn.parallel.DistributedDataParallel
model = MMDistributedDataParallel(
model.cuda(),
device_ids=[torch.cuda.current_device()],
broadcast_buffers=False,
find_unused_parameters=find_unused_parameters)
else:
model = MMDataParallel(
model.cuda(cfg.gpu_ids[0]), device_ids=cfg.gpu_ids)
if use_amp:
Runner = EpochBasedRunnerAmp
runner = Runner(
model,
optimizer=optimizer,
work_dir=cfg.work_dir,
logger=logger,
meta=meta,
amp=use_amp)
else:
Runner = OmniSourceRunner if cfg.omnisource else EpochBasedRunner
runner = Runner(
model,
optimizer=optimizer,
work_dir=cfg.work_dir,
logger=logger,
meta=meta)
# an ugly workaround to make .log and .log.json filenames the same
runner.timestamp = timestamp
# fp16 setting
fp16_cfg = cfg.get('fp16', None)
if fp16_cfg is not None:
optimizer_config = Fp16OptimizerHook(
**cfg.optimizer_config, **fp16_cfg, distributed=distributed)
elif distributed and 'type' not in cfg.optimizer_config:
optimizer_config = OptimizerHook(**cfg.optimizer_config)
else:
optimizer_config = cfg.optimizer_config
# register hooks
runner.register_training_hooks(cfg.lr_config, optimizer_config,
cfg.checkpoint_config, cfg.log_config,
cfg.get('momentum_config', None))
if distributed:
if cfg.omnisource:
runner.register_hook(OmniSourceDistSamplerSeedHook())
else:
runner.register_hook(DistSamplerSeedHook())
# precise bn setting
if cfg.get('precise_bn', False):
precise_bn_dataset = build_dataset(cfg.data.train)
dataloader_setting = dict(
videos_per_gpu=cfg.data.get('videos_per_gpu', 1),
workers_per_gpu=0, # save memory and time
num_gpus=len(cfg.gpu_ids),
dist=distributed,
seed=cfg.seed)
data_loader_precise_bn = build_dataloader(precise_bn_dataset,
**dataloader_setting)
precise_bn_hook = PreciseBNHook(data_loader_precise_bn,
**cfg.get('precise_bn'))
runner.register_hook(precise_bn_hook)
if validate:
eval_cfg = cfg.get('evaluation', {})
val_dataset = build_dataset(cfg.data.val, dict(test_mode=True))
dataloader_setting = dict(
videos_per_gpu=cfg.data.get('videos_per_gpu', 1),
workers_per_gpu=cfg.data.get('workers_per_gpu', 1),
# cfg.gpus will be ignored if distributed
num_gpus=len(cfg.gpu_ids),
dist=distributed,
shuffle=False)
dataloader_setting = dict(dataloader_setting,
**cfg.data.get('val_dataloader', {}))
val_dataloader = build_dataloader(val_dataset, **dataloader_setting)
eval_hook = DistEvalHook if distributed else EvalHook
runner.register_hook(eval_hook(val_dataloader, **eval_cfg))
if cfg.resume_from:
runner.resume(cfg.resume_from, resume_amp=use_amp)
elif cfg.get("auto_resume", False) and osp.exists(osp.join(runner.work_dir, 'latest.pth')):
runner.auto_resume()
elif cfg.load_from:
runner.load_checkpoint(cfg.load_from)
runner_kwargs = dict()
if cfg.omnisource:
runner_kwargs = dict(train_ratio=train_ratio)
runner.run(data_loaders, cfg.workflow, cfg.total_epochs, **runner_kwargs)
if test['test_last'] or test['test_best']:
best_ckpt_path = None
if test['test_best']:
if hasattr(eval_hook, 'best_ckpt_path'):
best_ckpt_path = eval_hook.best_ckpt_path
if best_ckpt_path is None or not osp.exists(best_ckpt_path):
test['test_best'] = False
if best_ckpt_path is None:
runner.logger.info('Warning: test_best set as True, but '
'is not applicable '
'(eval_hook.best_ckpt_path is None)')
else:
runner.logger.info('Warning: test_best set as True, but '
'is not applicable (best_ckpt '
f'{best_ckpt_path} not found)')
if not test['test_last']:
return
test_dataset = build_dataset(cfg.data.test, dict(test_mode=True))
gpu_collect = cfg.get('evaluation', {}).get('gpu_collect', False)
tmpdir = cfg.get('evaluation', {}).get('tmpdir',
osp.join(cfg.work_dir, 'tmp'))
dataloader_setting = dict(
videos_per_gpu=cfg.data.get('videos_per_gpu', 1),
workers_per_gpu=cfg.data.get('workers_per_gpu', 1),
num_gpus=len(cfg.gpu_ids),
dist=distributed,
shuffle=False)
dataloader_setting = dict(dataloader_setting,
**cfg.data.get('test_dataloader', {}))
test_dataloader = build_dataloader(test_dataset, **dataloader_setting)
names, ckpts = [], []
if test['test_last']:
names.append('last')
ckpts.append(None)
if test['test_best']:
names.append('best')
ckpts.append(best_ckpt_path)
for name, ckpt in zip(names, ckpts):
if ckpt is not None:
runner.load_checkpoint(ckpt)
outputs = multi_gpu_test(runner.model, test_dataloader, tmpdir,
gpu_collect)
rank, _ = get_dist_info()
if rank == 0:
out = osp.join(cfg.work_dir, f'{name}_pred.pkl')
test_dataset.dump_results(outputs, out)
eval_cfg = cfg.get('evaluation', {})
for key in [
'interval', 'tmpdir', 'start', 'gpu_collect',
'save_best', 'rule', 'by_epoch', 'broadcast_bn_buffers'
]:
eval_cfg.pop(key, None)
eval_res = test_dataset.evaluate(outputs, **eval_cfg)
runner.logger.info(f'Testing results of the {name} checkpoint')
for metric_name, val in eval_res.items():
runner.logger.info(f'{metric_name}: {val:.04f}')