-
Notifications
You must be signed in to change notification settings - Fork 2
/
fitter.py
54 lines (44 loc) · 1.56 KB
/
fitter.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
import random
import numpy as np
def fitterfunc(my_points, opp_points, my_loaded, opp_loaded, my_history, opp_history):
t = len(opp_history)
RPS = ["R","P","S"]
if t <= 2:
return RPS[t]
elif t == 3:
return random.choice(RPS)
def n(c): return RPS.index(c)
total_me = np.zeros(shape=(3,3))
total_opp= np.zeros(shape=(3,3))
p_me = np.array([[1/3]*3]*3)
p_opp = np.array([[1/3]*3]*3)
for i in range(1, t):
total_me[n(my_history[i-1]), n(opp_history[i])] += 1
total_opp[n(opp_history[i-1]), n(opp_history[i])] += 1
for i in range(3):
if np.sum(total_me[i,:]) != 0:
p_me[i,:] = total_me[i,:] / np.sum(total_me[i,:])
if np.sum(total_opp[i,:]) != 0:
p_opp[i,:] = total_opp[i,:] / np.sum(total_opp[i,:])
error_me = 0
error_opp = 0
for i in range(1, t):
diff = 1 - p_me[n(my_history[i-1]), n(opp_history[i])]
error_me += diff * diff
diff = 1 - p_opp[n(opp_history[i-1]), n(opp_history[i])]
error_opp += diff * diff
if error_me < error_opp:
p = p_me[n(my_history[-1]),:]
else:
p = p_opp[n(opp_history[-1]),:]
# From here, right now I weight values, though not 100% is the best idea, I leave the alternative in case I'd feel like changing it
value = [(p[2]*my_loaded[0] - p[1]*opp_loaded[1], "R"), (p[0]*my_loaded[1] - p[2]*opp_loaded[2], "P"), (p[1]*my_loaded[2] - p[0]*opp_loaded[0], "S")]
value.sort()
if value[-1][0] > value[-2][0]:
return value[-1][1]
elif value[-1][0] > value[-3][0]:
return random.choice([value[-1][1], value[-2][1]])
else:
return random.choice(RPS)
# idx = p.tolist().index(max(p))
# return ["P", "S", "R"][idx]