Skip to content

Latest commit

 

History

History
62 lines (47 loc) · 2.39 KB

6_correlation_rapidminer.md

File metadata and controls

62 lines (47 loc) · 2.39 KB

Correlation

Se retoma el modelo de outliers

Primero eliminamos los atributos que generamos en la deteccion de otuliers y utilizamos el modulo Correlation Matrix

Podemos observar que los atributos con mayor correlación son:

Atributo 1 Atributo 2 Correlación
radius_mean perimeter_mean 0.997561623039936
radius_worst perimeter_worst 0.992657065474132
radius_mean area_mean 0.9919003449129997
perimeter_mean area_mean 0.9902080430937652
radius_worst area_worst 0.98999500432762
perimeter_worst area_worst 0.9824612396754517
radius_mean radius_worst 0.9801099075417596
perimeter_mean radius_worst 0.9800989345342787
perimeter_mean perimeter_worst 0.9798591412747525
area_mean radius_worst 0.9793034894447585
area_mean area_worst 0.9769836451092457
radius_mean perimeter_worst 0.9737641514538055
area_mean perimeter_worst 0.9731997180741648
perimeter_mean area_worst 0.9618158006283064
radius_mean area_worst 0.9613407449790952
radius_se area_se 0.9588042517676202
radius_se perimeter_se 0.9581078557703023
perimeter_se area_se 0.9286230267439933
texture_mean texture_worst 0.9185988050092276
concave points_mean concave points_worst 0.9185319555861766
concavity_mean concave points_mean 0.9109626681857491
concavity_mean concavity_worst 0.9040835104706433
compactness_worst concavity_worst 0.8892615552044842
compactness_mean concavity_mean 0.8822007444342892
area_se area_worst 0.8767762149945185
compactness_mean compactness_worst 0.8708906979751478
concavity_mean concave points_worst 0.8581661018635018
concave points_mean perimeter_worst 0.8526946702369379
area_se perimeter_worst 0.8515309069167041
concavity_worst concave points_worst 0.8500507009197358

Podemos observar que las correlaciones mas altas son entre areas, perimietros y radios.

Podemos ver claramente que estos atributos estan correlacionados, por lo cual eliminaremos los atributos de la segunda columna con una correlacion superior a 0.85. Para esto usamos el modulo Remove correlated attributes.