forked from dartonias/TFIM-ZeroT
-
Notifications
You must be signed in to change notification settings - Fork 1
/
basis.h
865 lines (708 loc) · 27.8 KB
/
basis.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
#ifndef BASIS_H
#define BASIS_H
#include "head_proj.h"
#include "simparam.h"
class Basis: public PARAMS
{
private:
vector<int> LinkList;
vector<int> LegType;
vector<index3> Associates;
vector<int> inCluster;
vector<int> CalcRightCluster();
public:
vector <index2> OperatorList; //The operator list of 2m
// (-2,i): an off-diagonal site operator h(sigma^+_i + sigma^-_i)
// (-1,i): a diagonal site operator h
// (i,j): a diagonal bond operator J(sigma^z_i sigma^z_j + 1)
vector<int> S_left; //the left and right trial spin state
vector<int> S_right;
//center clusters built in Linked List
vector<int> LeftinClust;
vector<int> RightinClust;
int ClustNumber; //the number of clusters in the center
Basis(MTRand &); //constructor
void DiagonalUpdate(MTRand &);
void LinkedList();
void ClusterUpdate(MTRand &, int&);
int calc_LoopSize2();
int SWAP(const vector<int>& );
void printBasis();
void printLinkedList();
void filewrite(const int & num);
void fileread(const int & num);
};
Basis::Basis(MTRand& ran){//constructor
for (int i=0; i< numSpin; i++){
S_left.push_back(1); //start with all spin parallel
S_right.push_back(1);
}
int bond;
index2 temp;
for (int i=0; i<2*m_; i++){
if (ran.randInt(1) == 0) { //flip a coin
temp.set(-1,ran.randInt(numSpin-1)); //diagonal site operator
}
else {
bond = ran.randInt(numLattB-1); //diagonal bond operator
temp = Bst[bond]; //checked overloaded =
//cout<<"temp "<<bond<<" ";
//Bst[bond].print();
//cout<<endl;
}
OperatorList.push_back(temp);
}//i
//S_right.at(S_right.size()-1) = S_right.at(S_right.size()-1)^1;
//temp.set(-2,numSpin-1);
//OperatorList.at(m_) = temp;
}//----------------constructor
//----------------DiagonalUpdate function
void Basis::DiagonalUpdate(MTRand& ran){
vector<int> S_prop; //this is the temporary propagated spin state
S_prop = S_left; //assign to the left spin state
//Probability for a single-site diagonal operator
//double hProb = h_x/(2.0+h_x);
double hProb = 1.0*numSpin*h_x/(numLattB*2.0+numSpin*h_x);
int bond;
int flag;
for(int i=0; i<OperatorList.size(); i++){
if (ratioON == 1 && i == OperatorList.size()/2){ //SWAP for ratio trick
int tempj;
int Xindex = inAreg.size()-1;
for (int j=0; j<inAreg[Xindex].size(); j++)
if (inAreg[Xindex][j] == 1){
tempj = S_prop[j];
for (int rep=0; rep<alpha-1; rep++) //Permutation
S_prop[rep*numRealSpin+j] = S_prop[rep*numRealSpin+j+numRealSpin];
S_prop[(alpha-1)*numRealSpin+j] = tempj;
//S_prop[j] = S_prop[j+numSpin/alpha]; //old SWAP
//S_prop[j+numSpin/alpha] = tempj;
}
}//--- ratio trick
if (OperatorList[i].A == -2) //this is a off-diagonal site operator
S_prop[OperatorList[i].B] = S_prop[OperatorList[i].B]^1 ; //binary spin flip
else { //sample a new diagonal operator
flag = 0;
do{ //repeat until a valid selection is made
if (hProb > ran.rand() ){ //probability to choose a single-site h operator
OperatorList[i].set(-1,ran.randInt(numSpin-1)); //diagonal site operator
flag = 1; //successful!
}
else{
//cout<<"B "<<i<<" "<<endl;
bond = ran.randInt(numLattB-1); //new bond for diagonal bond operator
if (S_prop[Bst[bond].A] == S_prop[Bst[bond].B]) {
//spins are the same on the new bond
OperatorList[i] = Bst[bond]; //check overloaded =
flag = 1; //successful!
}
} //else the diagonal operator stays unchanged! repeat
}while(flag == 0);
}//insert diagonal
}//i the 2*m propagation
//DEBUG: check if the state was propagated correctly
for (int i=0; i<S_prop.size(); i++)
if (S_prop[i] != S_right[i]) cout<<"Basis state prop error: DIAG UPDATE \n";
}//----------------DiagonalUpdate
//----------------LinkedList function
void Basis::LinkedList(){
//Clear linked list from last iteration
LinkList.clear();
LegType.clear();
Associates.clear();
index3 empty(-1,-1,-1);
index3 temp3;
vector<int> First;
for (int i=0; i<numSpin; i++){ //the first vertex leg for each spin
First.push_back(i);
//below, build the first N vertices from the left-basis
LinkList.push_back(-99); //unknown what these link to!
LegType.push_back(S_left[i]); //0 or 1
Associates.push_back(empty); //these have no associates
}
vector<int> S_prop; //this is the temporary propagated spin state
S_prop = S_left; //assign to the left spin state
int Ccount, Ctemp; //cluster counter
vector<int> LRinClust;
Ccount = 0;
LRinClust.assign(numSpin,0);
int count = numSpin;
int site, site1, site2;
//The linked list is now size N. Add the 2m operators each of 4 or 2 legs
for(int i=0; i<OperatorList.size(); i++){
if (ratioON == 1 && i == OperatorList.size()/2){ //SWAP for ratio trick
int tempj;
int Xindex = inAreg.size()-1;
for (int j=0; j<inAreg[Xindex].size(); j++)
if (inAreg[Xindex][j] == 1){
tempj = First[j];
for (int rep=0; rep<alpha-1; rep++) //Permutation
First[rep*numRealSpin+j] = First[rep*numRealSpin+j+numRealSpin];
First[(alpha-1)*numRealSpin+j] = tempj;
//First[j] = First[j+numSpin/alpha]; //old SWAP
//First[j+numSpin/alpha] = tempj;
tempj = S_prop[j];
for (int rep=0; rep<alpha-1; rep++) //Permutation
S_prop[rep*numRealSpin+j] = S_prop[rep*numRealSpin+j+numRealSpin];
S_prop[(alpha-1)*numRealSpin+j] = tempj;
//S_prop[j] = S_prop[j+numSpin/alpha]; //old SWAP
//S_prop[j+numSpin/alpha] = tempj;
}
}//ratio trick
//assign non-trivial associates
if (OperatorList[i].A != -2 && OperatorList[i].A != -1){
temp3.set(count+1,count+2,count+3); Associates.push_back(temp3);
temp3.set(count,count+2,count+3); Associates.push_back(temp3);
temp3.set(count,count+1,count+3); Associates.push_back(temp3);
temp3.set(count,count+1,count+2); Associates.push_back(temp3);
count += 4;
}//done assigning associates
else{
Associates.push_back(empty);
Associates.push_back(empty);
count += 2;
}
if (OperatorList[i].A == -2){ //1-site off-diagonal operator is encountered
site = OperatorList[i].B;
//"lower" or leftmost leg
LinkList.push_back(First[site]); //site index
LegType.push_back(S_prop[site]); //the spin of the leg
S_prop[site] = S_prop[site]^1; //this is off-d: flip it
LinkList[First[site]] = LinkList.size()-1; //this leg links backwards...
First[site] = LinkList.size(); //update
//"upper" or rightmost leg
LinkList.push_back(-99); //null site index
LegType.push_back(S_prop[site]); //the spin of the leg (flipped)
LRinClust[site] = 0; //cluster counter for LHS
}
else if (OperatorList[i].A == -1){ //1-site diagonal operator is encountered
site = OperatorList[i].B;
//"lower" or leftmost leg
LinkList.push_back(First[site]); //site index
LegType.push_back(S_prop[site]); //the spin of the leg
LinkList[First[site]] = LinkList.size()-1; //this leg links backwards...
First[site] = LinkList.size(); //update
//"upper" or rightmost leg
LinkList.push_back(-99); //null site index
LegType.push_back(S_prop[site]); //the spin of the leg
LRinClust[site] = 0; //cluster counter for LHS
}
else {//2-site diagonal operator is encountered (4 legs)
//lower left
site1 = OperatorList[i].A;
LinkList.push_back(First[site1]); //site index
LegType.push_back(S_prop[site1]); //the spin of the leg
LinkList[First[site1]] = LinkList.size()-1; //this leg links backwards...
First[site1] = LinkList.size()+1;
//lower right
site2 = OperatorList[i].B;
LinkList.push_back(First[site2]); //site index
LegType.push_back(S_prop[site2]); //the spin of the leg
LinkList[First[site2]] = LinkList.size()-1; //this leg links backwards...
First[site2] = LinkList.size()+1;
//upper left
LinkList.push_back(-99); //null site index
LegType.push_back(S_prop[site1]); //the spin of the leg
//upper right
LinkList.push_back(-99); //null site index
LegType.push_back(S_prop[site2]); //the spin of the leg
//------Build the clusters here
//cout<<"sites "<<site1<<" "<<site2<<endl;
//cout<<"clust "<<LRinClust[site1]<<" "<<LRinClust[site2]<<endl;
if (LRinClust[site1] == 0 && LRinClust[site2] == 0)
{
Ccount++;
LRinClust[site1] = Ccount; LRinClust[site2] = Ccount;
}
else if (LRinClust[site1] != 0 && LRinClust[site2] == 0)
LRinClust[site2] = LRinClust[site1];
else if (LRinClust[site2] != 0 && LRinClust[site1] == 0)
LRinClust[site1] = LRinClust[site2];
else if (LRinClust[site2] != 0 && LRinClust[site1] != 0)
{
if (LRinClust[site2] != LRinClust[site1] ){
Ctemp = LRinClust[site2];
for (int ii=0; ii<LRinClust.size(); ii++)
if (LRinClust[ii] == Ctemp )
LRinClust[ii] = LRinClust[site1];
}
}
else cout<<"Mid cluster error \n";
//cout<<"Aclust "<<LRinClust[site1]<<" "<<LRinClust[site2]<<endl;
//-------------------------
}//bond operator encountered
if (i == OperatorList.size()/2-1){
LeftinClust = LRinClust; //Left-hand side
for (int jj=0; jj<LeftinClust.size(); jj++){
if (LeftinClust[jj] == 0){
Ccount++;
LeftinClust[jj] = Ccount;
}
}//jj
}
}//i
//RightinClust = LRinClust; //Right-hand side
//for (int jj=0; jj<RightinClust.size(); jj++){
// if (RightinClust[jj] == 0 || RightinClust[jj] == -1){
// Ccount++;
// RightinClust[jj] = Ccount;
// }
//}//jj
RightinClust = CalcRightCluster();
//now add the legs of the final ("top"or right-hand) spin state
for (int i=0; i<numSpin; i++){
LinkList.push_back(First[i]);
LinkList[First[i]] = LinkList.size()-1;
LegType.push_back(S_prop[i]); //0 or 1
Associates.push_back(empty);
}
// cout<<"Ass size :"<<Associates.size()<<endl;
// cout<<"LL size :"<<LinkList.size()<<endl;
// cout<<"LT size :"<<LegType.size()<<endl;
//DEBUG: check if the state was propagated correctly
for (int i=0; i<S_prop.size(); i++)
if (S_prop[i] != S_right[i]) cout<<"Basis state prop error: LINKED LIST\n";
}//----------------LinkedList
vector<int> Basis::CalcRightCluster(){
vector<int> Last;
vector<int> LL;
for (int i=0; i<numSpin; i++){ //the first vertex leg for each spin
Last.push_back(i);
LL.push_back(-99); //unknown what these link to!
}
int Ccount = 0;
int Ctemp;
vector<int> LRinClust(numSpin,0);
int site, site1, site2;
for(int i=OperatorList.size()-1; i>=OperatorList.size()/2; i--){
if (OperatorList[i].A == -2){ //1-site off-diagonal operator is encountered
site = OperatorList[i].B;
//"lower" or leftmost leg
LL.push_back(Last[site]); //site index
LL[Last[site]] = LL.size()-1; //this leg links backwards...
Last[site] = LL.size(); //update
//"upper" or rightmost leg
LL.push_back(-99); //null site index
LRinClust[site] = 0; //cluster counter for LHS
}
else if (OperatorList[i].A == -1){ //1-site diagonal operator is encountered
site = OperatorList[i].B;
//"lower" or leftmost leg
LL.push_back(Last[site]); //site index
LL[Last[site]] = LL.size()-1; //this leg links backwards...
Last[site] = LL.size(); //update
//"upper" or rightmost leg
LL.push_back(-99); //null site index
LRinClust[site] = 0; //cluster counter for LHS
}
else {//2-site diagonal operator is encountered (4 legs)
//lower left
site1 = OperatorList[i].A;
LL.push_back(Last[site1]); //site index
LL[Last[site1]] = LL.size()-1; //this leg links backwards...
Last[site1] = LL.size()+1;
//lower right
site2 = OperatorList[i].B;
LL.push_back(Last[site2]); //site index
LL[Last[site2]] = LL.size()-1; //this leg links backwards...
Last[site2] = LL.size()+1;
//upper left
LL.push_back(-99); //null site index
//upper right
LL.push_back(-99); //null site index
if (LRinClust[site1] == 0 && LRinClust[site2] == 0)
{
Ccount++;
LRinClust[site1] = Ccount; LRinClust[site2] = Ccount;
}
else if (LRinClust[site1] != 0 && LRinClust[site2] == 0)
LRinClust[site2] = LRinClust[site1];
else if (LRinClust[site2] != 0 && LRinClust[site1] == 0)
LRinClust[site1] = LRinClust[site2];
else if (LRinClust[site2] != 0 && LRinClust[site1] != 0)
{
if (LRinClust[site2] != LRinClust[site1] ){
Ctemp = LRinClust[site2];
for (int ii=0; ii<LRinClust.size(); ii++)
if (LRinClust[ii] == Ctemp )
LRinClust[ii] = LRinClust[site1];
}
}
else cout<<"Mid cluster error \n";
}//bond operator encountered
}//i
for (int jj=0; jj<LRinClust.size(); jj++){
if (LRinClust[jj] == 0){
Ccount++;
LRinClust[jj] = Ccount;
}
}//jj
//A permute for the ratio trick...
if (ratioON == 1){
int Xindex = inAreg.size()-1;
int temp;
for (int i=0; i<inAreg[Xindex].size(); i++){
if (inAreg[Xindex][i] != 0){
temp = LRinClust[i];
for (int rep=0; rep<alpha-1; rep++)
LRinClust[rep*numRealSpin+i] = LRinClust[rep*numRealSpin+i+numRealSpin];
LRinClust[(alpha-1)*numRealSpin+i] = temp;
}
}
}//if
return LRinClust;
}//CalcRightCluster
//----------------ClusterUpdate
void Basis::ClusterUpdate(MTRand& ran, int& L2){
inCluster.clear(); //redundant with assign
inCluster.assign(LinkList.size(),0);//nothing in clusters yet
stack<int> cluster;
int leg, assoc;
bool flip;
int ccount = 0;
for (int i=0; i<LinkList.size(); i++){ //loop to find all clusters
//add a new leg
if (inCluster[i] == 0 && Associates[i].A == -1){ //spins and site ops only
ccount ++; //cluster counter
cluster.push(i);
inCluster[cluster.top()] = ccount;
if (ran.rand() < 0.5) flip = true; else flip = false; //flip a coin for SW
if (flip == true) LegType[cluster.top()] = LegType[cluster.top()]^1;
while(!cluster.empty()){ //build the cluster associated with this leg
//first follow the link
leg = LinkList[cluster.top()];
cluster.pop();
if (inCluster[leg] == 0){
inCluster[leg] = ccount; //add the linked leg
if (flip == true) LegType[leg] = LegType[leg]^1;
//now check all associates
assoc = Associates[leg].A;
if (assoc != -1) {
cluster.push(assoc); inCluster[assoc] = ccount;
if (flip == true) LegType[assoc] = LegType[assoc]^1;
assoc = Associates[leg].B;
cluster.push(assoc); inCluster[assoc] = ccount;
if (flip == true) LegType[assoc] = LegType[assoc]^1;
assoc = Associates[leg].C;
cluster.push(assoc); inCluster[assoc] = ccount;
if (flip == true) LegType[assoc] = LegType[assoc]^1;
}
}
}//while
}//if building a new cluster
}//i
//cout<<"inCluster: ";
//for (int i=0; i<inCluster.size(); i++)
// cout<<inCluster[i]<<" ";
//cout<<endl;
//map back basis states and operator list
for(int i=0; i<numSpin; i++){
S_left[i] = LegType[i];
}//i
int count = numSpin;
for(int i=0; i<OperatorList.size(); i++){
//assign non-trivial associates
if (OperatorList[i].A != -2 && OperatorList[i].A != -1){
count += 4;
}//done assigning associates
else{
if (LegType[count] == LegType[count+1])
OperatorList[i].A = -1;
else
OperatorList[i].A = -2;
count += 2;
}
}//i
for(int i=0; i<numSpin; i++){
S_right[i] = LegType[LegType.size()-numSpin + i];
}//i
//L2 = calc_LoopSize2(); //used for old magnetization estimator
//LinkList.clear(); //clear up the linked list
//LegType.clear();
//Associates.clear();
//inCluster.clear(); //redundant with assign
}//----------------ClusterUpdate
int Basis::calc_LoopSize2(){
vector<int> Last;
vector<int> LL;
for (int i=0; i<numSpin; i++){ //the first vertex leg for each spin
Last.push_back(i);
LL.push_back(-99); //unknown what these link to!
}
int site, site1, site2;
for(int i=0; i<OperatorList.size()/2; i++){
if (OperatorList[i].A == -2){ //1-site off-diagonal operator is encountered
site = OperatorList[i].B;
//"lower" or leftmost leg
LL.push_back(Last[site]); //site index
LL[Last[site]] = LL.size()-1; //this leg links backwards...
Last[site] = LL.size(); //update
//"upper" or rightmost leg
LL.push_back(-99); //null site index
}
else if (OperatorList[i].A == -1){ //1-site diagonal operator is encountered
site = OperatorList[i].B;
//"lower" or leftmost leg
LL.push_back(Last[site]); //site index
LL[Last[site]] = LL.size()-1; //this leg links backwards...
Last[site] = LL.size(); //update
//"upper" or rightmost leg
LL.push_back(-99); //null site index
}
else {//2-site diagonal operator is encountered (4 legs)
//lower left
site1 = OperatorList[i].A;
LL.push_back(Last[site1]); //site index
LL[Last[site1]] = LL.size()-1; //this leg links backwards...
Last[site1] = LL.size()+1;
//lower right
site2 = OperatorList[i].B;
LL.push_back(Last[site2]); //site index
LL[Last[site2]] = LL.size()-1; //this leg links backwards...
Last[site2] = LL.size()+1;
//upper left
LL.push_back(-99); //null site index
//upper right
LL.push_back(-99); //null site index
}
}//i
vector<int> ClusterSize(LL.size(),0); //is this the maximum size?
vector<int> numCluster(LL.size(),0);
for (int i=0; i<numSpin; i++){
ClusterSize[inCluster[Last[i]]]++;
numCluster[inCluster[Last[i]]]=1;
}
//cout<<"ClusterSize: ";
//for (int i=0; i<ClusterSize.size(); i++)
// if (ClusterSize[i] != 0) cout<<i<<" "<<ClusterSize[i]<<" ";
//cout<<endl;
int sizesquared=0;
int Ccount=0;
for (int i=0; i<ClusterSize.size(); i++){
sizesquared += ClusterSize[i]*ClusterSize[i];
Ccount += numCluster[i];
}
//cout<<sizesquared<<endl;
//cout<<"clusters in center "<<Ccount<<" ";
ClustNumber = Ccount; //number of clusters crossing the center
return sizesquared;
}//calc_LoopSize2
//----------------print LinkedList
void Basis::printLinkedList(){
//for (int i=0; i<LinkList.size(); i++){
// cout<<i<<" ";
// cout<<LinkList[i]<<" ";
// cout<<LegType[i]<<"\n";
//}
cout<<"LH cluster : ";
for (int i=0; i<LeftinClust.size(); i++)
cout<<LeftinClust[i]<<" ";
cout<<endl;
cout<<"RH cluster : ";
for (int i=0; i<RightinClust.size(); i++)
cout<<RightinClust[i]<<" ";
cout<<endl;
}//printLinkedList
//----------------print function
void Basis::printBasis(){
cout<<"Basis "<<endl;
for (int i=0; i<S_left.size(); i++){
cout<<S_left[i]<<" ";
}
cout<<endl;
for (int i=0; i<S_right.size(); i++){
cout<<S_right[i]<<" ";
}
cout<<endl;
for (int i=0; i<OperatorList.size(); i++){
OperatorList[i].print();
}
// cout<<endl;
// for (int i=0; i<Associates.size(); i++){
// Associates[i].print();
// }
// cout<<endl;
}//print
//----------------SWAP
int Basis::SWAP(const vector<int>& inA){
vector<int> Last;
vector<int> swapLL;
for (int i=0; i<numSpin; i++){ //the first vertex leg for each spin
Last.push_back(i);
swapLL.push_back(-99); //unknown what these link to!
}
vector<int> Last_atHalf;
int count = numSpin;
int site, site1, site2;
for(int i=0; i<OperatorList.size(); i++){
if (i == OperatorList.size()/2){ //check - in the center?
int tempj;
for (int j=0; j<inA.size(); j++)
if (inA[j] == 1){
tempj = Last[j];
Last[j] = Last[j+numSpin/2]; //SWAP: not for Permutation
Last[j+numSpin/2] = tempj;
}
Last_atHalf = Last; //copy
}//i at the center
if (OperatorList[i].A == -2){ //1-site off-diagonal operator is encountered
site = OperatorList[i].B;
//"lower" or leftmost leg
swapLL.push_back(Last[site]); //site index
swapLL[Last[site]] = swapLL.size()-1; //this leg links backwards...
Last[site] = swapLL.size(); //update
//"upper" or rightmost leg
swapLL.push_back(-99); //null site index
}
else if (OperatorList[i].A == -1){ //1-site diagonal operator is encountered
site = OperatorList[i].B;
//"lower" or leftmost leg
swapLL.push_back(Last[site]); //site index
swapLL[Last[site]] = swapLL.size()-1; //this leg links backwards...
Last[site] = swapLL.size(); //update
//"upper" or rightmost leg
swapLL.push_back(-99); //null site index
}
else {//2-site diagonal operator is encountered (4 legs)
//lower left
site1 = OperatorList[i].A;
swapLL.push_back(Last[site1]); //site index
swapLL[Last[site1]] = swapLL.size()-1; //this leg links backwards...
Last[site1] = swapLL.size()+1;
//lower right
site2 = OperatorList[i].B;
swapLL.push_back(Last[site2]); //site index
swapLL[Last[site2]] = swapLL.size()-1; //this leg links backwards...
Last[site2] = swapLL.size()+1;
//upper left
swapLL.push_back(-99); //null site index
//upper right
swapLL.push_back(-99); //null site index
}
}//i
//now add the legs of the final ("top"or right-hand) spin state
for (int i=0; i<numSpin; i++){
swapLL.push_back(Last[i]);
swapLL[Last[i]] = swapLL.size()-1;
}
//DONE BUILDING SWAPPED LINKED LIST
vector<int> swap_inClust(swapLL.size(),0);//nothing in clusters yet
stack<int> cluster;
int leg, assoc;
int ccount = 0;
for (int i=0; i<swapLL.size(); i++){ //loop to find all clusters
//add a new leg
if (swap_inClust[i] == 0 && Associates[i].A == -1){ //spins and site ops only
ccount ++; //cluster counter
cluster.push(i);
swap_inClust[cluster.top()] = ccount;
while(!cluster.empty()){ //build the cluster associated with this leg
//first follow the link
leg = swapLL[cluster.top()];
cluster.pop();
if (swap_inClust[leg] == 0){
swap_inClust[leg] = ccount; //add the linked leg
//now check all associates
assoc = Associates[leg].A;
if (assoc != -1) {
cluster.push(assoc); swap_inClust[assoc] = ccount;
assoc = Associates[leg].B;
cluster.push(assoc); swap_inClust[assoc] = ccount;
assoc = Associates[leg].C;
cluster.push(assoc); swap_inClust[assoc] = ccount;
}
}
}//while
}//if building a new cluster
}//i
//DONE BUILDING CLUSTERS
vector<int> numCluster(swapLL.size(),0); //is this the maximum size?
for (int i=0; i<numSpin; i++)
numCluster[swap_inClust[Last_atHalf[i]]] = 1; //look at half
int Ccount=0;
for (int i=0; i<numCluster.size(); i++)
Ccount += numCluster[i];
return Ccount;
}//----------------SWAP
void Basis::filewrite(const int & num){
char fname[8];
if (num == 0) fname[1] = '0';
else if (num%9 == 0) fname[1] = '9';
else if (num%8 == 0) fname[1] = '8';
else if (num%7 == 0) fname[1] = '7';
else if (num%6 == 0) fname[1] = '6';
else if (num%5 == 0) fname[1] = '5';
else if (num%4 == 0) fname[1] = '4';
else if (num%3 == 0) fname[1] = '3';
else if (num%2 == 0) fname[1] = '2';
else if (num%1 == 0) fname[1] = '1';
fname[0] = '0';
fname[2] = '.';
fname[3] = 'b';
fname[4] = 'a';
fname[5] = 's';
fname[6] = 'e';
fname[7] = '\0';
ofstream cfout;
cfout.open(fname);
for (int i=0; i<S_left.size(); i++)
cfout<<S_left[i]<<" ";
cfout<<endl;
for (int i=0; i<S_right.size(); i++)
cfout<<S_right[i]<<" ";
cfout<<endl;
cfout<<OperatorList.size()<<endl;
for (int i=0; i<OperatorList.size(); i++){
cfout<<OperatorList[i].A<<" ";
cfout<<OperatorList[i].B<<endl;
}
cfout<<"-999 \n"; //check for file corruption etc
cfout.close();
}//filewrite
void Basis::fileread(const int & num){
char fname[8];
if (num == 0) fname[1] = '0';
else if (num%9 == 0) fname[1] = '9';
else if (num%8 == 0) fname[1] = '8';
else if (num%7 == 0) fname[1] = '7';
else if (num%6 == 0) fname[1] = '6';
else if (num%5 == 0) fname[1] = '5';
else if (num%4 == 0) fname[1] = '4';
else if (num%3 == 0) fname[1] = '3';
else if (num%2 == 0) fname[1] = '2';
else if (num%1 == 0) fname[1] = '1';
fname[0] = '0';
fname[2] = '.';
fname[3] = 'b';
fname[4] = 'a';
fname[5] = 's';
fname[6] = 'e';
fname[7] = '\0';
ifstream cfin;
cfin.open(fname);
if (cfin.fail() ) { //check for errors
cout<<"Could not open a basis input file "<<endl;
}
int temp;
for (int i=0; i<S_left.size(); i++){
cfin>>temp;
S_left[i] = temp;
}
for (int i=0; i<S_right.size(); i++){
cfin>>temp;
S_right[i] = temp;
}
cfin>>temp; //OperatorList.size();
if (temp != 2*m_) cout<<"Basis fileread error 1 \n";
if (temp != OperatorList.size() ) cout<<"Basis fileread error 2 \n";
for (int i=0; i<OperatorList.size(); i++){
cfin>>temp;
OperatorList[i].A = temp;
cfin>>temp;
OperatorList[i].B = temp;
}
cfin>>temp; //OperatorList.size();
if (temp != -999) cout<<"Basis fileread error 3 \n";
cfin.close();
}//fileread
#endif