Skip to content

ModelZoo/PricePrediction

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

18 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

PricePrediction

Simple Linear Regression Model implemented by ModelZoo.

Installation

Firstly you need to clone this repository and install dependencies with pip:

pip3 install -r requirements.txt

Dataset

We use BostonHousing dataset for example.

Usage

We can run this model like this:

python3 train.py

Outputs like this:

Epoch 1/100
 1/13 [=>............................] - ETA: 0s - loss: 816.1798
13/13 [==============================] - 0s 4ms/step - loss: 457.9925 - val_loss: 343.2489

Epoch 2/100
 1/13 [=>............................] - ETA: 0s - loss: 361.5632
13/13 [==============================] - 0s 3ms/step - loss: 274.7090 - val_loss: 206.7015
Epoch 00002: saving model to checkpoints/model.ckpt

Epoch 3/100
 1/13 [=>............................] - ETA: 0s - loss: 163.5308
13/13 [==============================] - 0s 3ms/step - loss: 172.4033 - val_loss: 128.0830

Epoch 4/100
 1/13 [=>............................] - ETA: 0s - loss: 115.4743
13/13 [==============================] - 0s 3ms/step - loss: 112.6434 - val_loss: 85.0848
Epoch 00004: saving model to checkpoints/model.ckpt

Epoch 5/100
 1/13 [=>............................] - ETA: 0s - loss: 149.8252
13/13 [==============================] - 0s 3ms/step - loss: 77.0281 - val_loss: 57.9716
....

Epoch 42/100
 7/13 [===============>..............] - ETA: 0s - loss: 20.5911
13/13 [==============================] - 0s 8ms/step - loss: 22.4666 - val_loss: 23.7161
Epoch 00042: saving model to checkpoints/model.ckpt

It runs only 42 epochs and stopped early, because there are no more good evaluation results for 20 epochs.

When finished, we can find two folders generated named checkpoints and events.

Go to events and run TensorBoard:

cd events
tensorboard --logdir=.

TensorBoard like this:

There are training batch loss, epoch loss, eval loss.

And also we can find checkpoints in checkpoints dir.

It saved the best model named model.ckpt according to eval score, and it also saved checkpoints every 2 epochs.

Next we can predict using existing checkpoints and infer.py.

Now we've restored the specified model model-best.ckpt and prepared test data, outputs like this:

[[ 9.637125 ]
 [21.368305 ]
 [20.898445 ]
 [33.832504 ]
 [25.756516 ]
 [21.264557 ]
 [29.069794 ]
 [24.968184 ]
 ...
 [36.027283 ]
 [39.06852  ]
 [25.728745 ]
 [41.62165  ]
 [34.340042 ]
 [24.821484 ]]

OK, we've finished restoring and predicting. Just so quickly.

License

MIT

About

Boston Housing Prediction

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages