-
Notifications
You must be signed in to change notification settings - Fork 0
/
cull_mesh.py
315 lines (271 loc) · 12.3 KB
/
cull_mesh.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
import os
import argparse
import glob
import numpy as np
import torch
import imageio
import trimesh
import pyrender
from tqdm import tqdm
from copy import deepcopy
import config
from datasets.dataset import get_dataset
def load_virt_cam_poses(path):
poses = []
pose_paths = sorted(glob.glob(os.path.join(path, '*.txt')),
key=lambda x: int(os.path.basename(x)[:-4]))
for pose_path in pose_paths:
with open(pose_path, "r") as f:
lines = f.readlines()
ls = []
for line in lines:
l = list(map(float, line.split(' ')))
ls.append(l)
c2w = np.array(ls).reshape(4, 4)
# virt_cams are stored under OpenCV convention, so need to convert to OpenGL
c2w[:3, 1] *= -1
c2w[:3, 2] *= -1
poses.append(c2w)
assert len(poses) > 0, "Make sure the path: {} really has virtual views!".format(path)
print("Added {} virtual views from {}".format(len(poses), path))
return poses
def load_cam_intrinsics_from_cfg(cfg):
K = np.array([[cfg['cam']['fx'], .0, cfg['cam']['cx']],
[.0, cfg['cam']['fy'], cfg['cam']['cy']],
[.0, .0, 1.0]]).reshape(3, 3)
H, W = cfg["cam"]["H"], cfg["cam"]["W"]
return K, H, W
def render_depth_maps(mesh, poses, K, H, W, near=0.01, far=5.0):
"""
:param mesh: Mesh to be rendered
:param poses: list of camera poses (c2w under OpenGL convention)
:param K: camera intrinsics [3, 3]
:param W: width of image plane
:param H: height of image plane
:param near: near clip
:param far: far clip
:return: list of rendered depth images [H, W]
"""
mesh = pyrender.Mesh.from_trimesh(mesh)
scene = pyrender.Scene()
scene.add(mesh)
camera = pyrender.IntrinsicsCamera(fx=K[0, 0], fy=K[1, 1], cx=K[0, 2], cy=K[1, 2], znear=near, zfar=far)
camera_node = pyrender.Node(camera=camera, matrix=np.eye(4))
scene.add_node(camera_node)
renderer = pyrender.OffscreenRenderer(W, H)
render_flags = pyrender.RenderFlags.OFFSCREEN | pyrender.RenderFlags.DEPTH_ONLY
depth_maps = []
for pose in poses:
scene.set_pose(camera_node, pose)
depth = renderer.render(scene, render_flags)
depth_maps.append(depth)
return depth_maps
def render_depth_maps_doublesided(mesh, poses, K, H, W, near=0.01, far=10.0):
depth_maps_1 = render_depth_maps(mesh, poses, K, H, W, near=near, far=far)
mesh.faces[:, [1, 2]] = mesh.faces[:, [2, 1]]
depth_maps_2 = render_depth_maps(mesh, poses, K, H, W, near=near, far=far)
mesh.faces[:, [1, 2]] = mesh.faces[:, [2, 1]] # it's a pass by reference, so I restore the original order
depth_maps = []
for i in tqdm(range(len(depth_maps_1))):
depth_map = np.where(depth_maps_1[i] > 0, depth_maps_1[i], depth_maps_2[i])
depth_map = np.where((depth_maps_2[i] > 0) & (depth_maps_2[i] < depth_map), depth_maps_2[i], depth_map)
depth_maps.append(depth_map)
return depth_maps
def cull_by_bounds(points, scene_bounds, eps=0.02):
"""
:param points:
:param scene_bounds:
:param eps:
:return:
"""
inside_mask = np.all(points >= (scene_bounds[0] - eps), axis=1) & np.all(points <= (scene_bounds[1] + eps), axis=1)
return inside_mask
def cull_from_one_pose(points, pose, K, H, W, remove_occlusion=True, rendered_depth=None, eps=0.03):
"""
:param points: mesh vertices [V, 3] np array
:param pose: c2w under OpenGL convention (right-up-back) [3, 3] np array
:param K: camera intrinsics [3, 3] np array
:param rendered_depth: rendered depth image (optional)
:param remove_occlusion:
:return:
"""
c2w = deepcopy(pose)
# convert to OpenCV pose
c2w[:3, 1] *= -1
c2w[:3, 2] *= -1
w2c = np.linalg.inv(c2w)
rotation = w2c[:3, :3]
translation = w2c[:3, 3]
# pts under camera coordinate frame
camera_space = rotation @ points.transpose() + translation[:, None] # [3, N]
uvz = (K @ camera_space).transpose() # [N, 3]
pz = uvz[:, 2] + 1e-8
px = uvz[:, 0] / pz
py = uvz[:, 1] / pz
# step 1: frustum
in_frustum_mask = (0 <= px) & (px <= W - 1) & (0 <= py) & (py <= H - 1) & (pz > 0)
u = np.clip(px, 0, W - 1).astype(np.int32)
v = np.clip(py, 0, H - 1).astype(np.int32)
# step 2: self occlusion
obs_mask = in_frustum_mask
if remove_occlusion:
assert rendered_depth is not None, "remove_occlusion requires rendered depth image!!!"
obs_mask = in_frustum_mask & (pz < (rendered_depth[v, u] + eps))
return in_frustum_mask.astype(np.int32), obs_mask.astype(np.int32)
def apply_culling_strategy(points, poses, K, H, W,
rendered_depth_list=None,
remove_occlusion=True,
verbose=False,
virt_cam_starts=-1,
eps=0.03):
"""
:param points:
:param poses:
:param K:
:param H:
:param W:
:param rendered_depth_list:
:param remove_occlusion:
:param verbose:
:param virt_cam_starts:
:return:
"""
in_frustum_mask = np.zeros(points.shape[0])
obs_mask = np.zeros(points.shape[0])
for i, pose in enumerate(tqdm(poses)):
if verbose:
print('Processing pose ' + str(i + 1) + ' out of ' + str(len(poses)))
rendered_depth = rendered_depth_list[i] if rendered_depth_list is not None else None
in_frustum, obs = cull_from_one_pose(points, pose, K, H, W,
rendered_depth=rendered_depth,
remove_occlusion=remove_occlusion,
eps=eps)
obs_mask = obs_mask + obs
# virtual camera views shouldn't contribute to in_frustum_mask, it only adds more entries to obs_mask
if virt_cam_starts < 0 or i < virt_cam_starts:
in_frustum_mask = in_frustum_mask + in_frustum
return in_frustum_mask, obs_mask
def cull_one_mesh(cfg, c2w_list, mesh_path, save_path, save_unseen=False, remove_occlusion=True,
virtual_cameras=False, virt_cam_path=None, subdivide=False, max_edge=0.05,
scene_bounds=None, th_obs=0, eps=0.03, silent=True, platform='egl'):
"""
:param cfg:
:param c2w_list: list of camera poses (c2w under OpenGL)
:param mesh_path:
:param save_path:
:param save_unseen: save unobserved vertices
:param remove_occlusion:
:param virtual_cameras:
:param virt_cam_path: path to the dir that saves virtual camera views (optional)
:param scene_bounds:
:param th_obs:
:param silent:
:param platform:
:return:
"""
# load original mesh
mesh = trimesh.load(mesh_path, force='mesh', process=False)
vertices = mesh.vertices # [V, 3]
triangles = mesh.faces # [F, 3]
colors = mesh.visual.vertex_colors # [V, 3]
# cull with the bounding box first
if scene_bounds is not None:
inside_mask = cull_by_bounds(vertices, scene_bounds)
inside_mask = inside_mask[triangles[:, 0]] | inside_mask[triangles[:, 1]] | inside_mask[triangles[:, 2]]
triangles = triangles[inside_mask, :]
os.environ['PYOPENGL_PLATFORM'] = platform
K, H, W = load_cam_intrinsics_from_cfg(cfg)
# add virtual cameras to camera poses list
if virtual_cameras:
virt_cam_starts = len(c2w_list)
if virt_cam_path is None:
virt_cam_path = os.path.join(cfg['data']['datadir'], 'virtual_cameras') # hardcoded path
c2w_list = c2w_list + load_virt_cam_poses(virt_cam_path)
else:
virt_cam_starts = -1
# we don't need to subdivided mesh to render depth, so do the rendering before updating the mesh
if remove_occlusion:
print("rendering depth maps...")
rendered_depth_maps = render_depth_maps_doublesided(mesh, c2w_list, K, H, W, near=0.01, far=10.0)
else:
rendered_depth_maps = None
# update the mesh vertices and faces
mesh = trimesh.Trimesh(vertices, triangles, process=False)
mesh.remove_unreferenced_vertices()
# start culling
points = vertices[:, :3] # [V, 3]
in_frustum_mask, obs_mask = apply_culling_strategy(points, c2w_list, K, H, W,
rendered_depth_list=rendered_depth_maps,
verbose=(not silent),
remove_occlusion=remove_occlusion,
virt_cam_starts=virt_cam_starts,
eps=eps)
inf1 = in_frustum_mask[triangles[:, 0]] # [F, 3]
inf2 = in_frustum_mask[triangles[:, 1]]
inf3 = in_frustum_mask[triangles[:, 2]]
in_frustum_mask = (inf1 > th_obs) | (inf2 > th_obs) | (inf3 > th_obs)
if remove_occlusion:
obs1 = obs_mask[triangles[:, 0]]
obs2 = obs_mask[triangles[:, 1]]
obs3 = obs_mask[triangles[:, 2]]
obs_mask = (obs1 > th_obs) | (obs2 > th_obs) | (obs3 > th_obs)
valid_mask = in_frustum_mask & obs_mask # [F,]
else:
valid_mask = in_frustum_mask
triangles_observed = triangles[valid_mask, :]
# save culled mesh
mesh = trimesh.Trimesh(vertices, triangles_observed, vertex_colors=colors, process=False)
mesh.remove_unreferenced_vertices()
mesh.export(save_path)
# save unobserved points
if save_unseen:
triangles_not_observed = triangles[~valid_mask, :]
mesh_not_observed = trimesh.Trimesh(vertices, triangles_not_observed, process=False)
mesh_not_observed.remove_unreferenced_vertices()
save_dir = os.path.dirname(save_path)
scene_name = save_path.split("/")[-1].split("_")[0]
mesh_not_observed.export("{}/{}_unseen.ply".format(save_dir, scene_name))
pc_unseen = mesh_not_observed.vertices
np.save("{}/{}_pc_unseen.npy".format(save_dir, scene_name), pc_unseen)
if __name__ == "__main__":
parser = argparse.ArgumentParser(
description="Arguments for mesh culling script."
)
parser.add_argument("--config", required=True, type=str, help="config file for the scene of input mesh")
parser.add_argument("--input_mesh", required=True, type=str, help="path to the mesh to be culled")
parser.add_argument("--output_mesh", type=str, help="path to save the culled mesh (optional)")
parser.add_argument("--remove_occlusion", dest="remove_occlusion", action="store_true")
parser.add_argument("--virtual_cameras", dest="virtual_cameras", action="store_true")
parser.add_argument("--virt_cam_path", type=str, help="path to virtual camera DIR (optional)")
parser.add_argument("--gt_pose", dest="gt_pose", action="store_true")
parser.add_argument("--ckpt_path", type=str, help="path to checkpoint file")
parser.add_argument("--skip", type=int, default=2)
parser.add_argument("--th_obs", type=int, default=0)
parser.add_argument("--eps", type=float, default=0.03)
args = parser.parse_args()
if args.remove_occlusion and args.virtual_cameras:
print("Using Co-SLAM culling strategy...")
suffix = "virt_cams"
elif args.remove_occlusion:
print("Using Neural-RGBD/GO-Surf culling strategy...")
suffix = "occlusion"
else:
print("Using iMAP/NICE-SLAM culling strategy...")
suffix = "frustum"
mesh_path = args.input_mesh
if args.output_mesh is None:
save_path = mesh_path.replace(".ply", "_cull_{}.ply".format(suffix))
else:
save_path = args.output_mesh
cfg = config.load_config(args.config)
if args.gt_pose:
dataset = get_dataset(cfg)
c2w_list = [np.array(dataset.poses[i]).astype(np.float32) for i in dataset.frame_ids[::args.skip]]
else:
assert args.ckpt_path is not None and os.path.exists(args.ckpt_path), "Please ensure you provided ckpt path and it exists!!!"
c2w_list_dict = torch.load(args.ckpt_path)["pose"]
c2w_list = [c2w_list_dict[i].cpu().numpy() for i in range(0, len(c2w_list_dict.keys()), args.skip)]
cull_one_mesh(cfg, c2w_list, mesh_path, save_path, save_unseen=False,
remove_occlusion=args.remove_occlusion, scene_bounds=None,
eps=args.eps, th_obs=args.th_obs, silent=True, platform='egl',
virtual_cameras=args.virtual_cameras, virt_cam_path=args.virt_cam_path)