-
Notifications
You must be signed in to change notification settings - Fork 0
/
eval_recon.py
374 lines (320 loc) · 14.2 KB
/
eval_recon.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
import argparse
import os
import random
import time
import numpy as np
import open3d as o3d
import torch
import trimesh
from scipy.spatial import cKDTree as KDTree
'''
reconstruction evaluation tools
modified from https://github.com/cvg/nice-slam/blob/master/src/tools/eval_recon.py
'''
def normalize(x):
return x / np.linalg.norm(x)
def viewmatrix(z, up, pos):
vec2 = normalize(z)
vec1_avg = up
vec0 = normalize(np.cross(vec1_avg, vec2))
vec1 = normalize(np.cross(vec2, vec0))
m = np.stack([vec0, vec1, vec2, pos], 1)
return m
def completion_ratio(gt_points, rec_points, dist_th=0.05):
gen_points_kd_tree = KDTree(rec_points)
distances, _ = gen_points_kd_tree.query(gt_points)
comp_ratio = np.mean((distances < dist_th).astype(np.float32))
return comp_ratio
def accuracy(gt_points, rec_points):
gt_points_kd_tree = KDTree(gt_points)
distances, _ = gt_points_kd_tree.query(rec_points)
acc = np.mean(distances)
return acc
def completion(gt_points, rec_points):
gt_points_kd_tree = KDTree(rec_points)
distances, _ = gt_points_kd_tree.query(gt_points)
comp = np.mean(distances)
return comp
def get_align_transformation(rec_meshfile, gt_meshfile):
"""
Get the transformation matrix to align the reconstructed mesh to the ground truth mesh.
"""
o3d_rec_mesh = o3d.io.read_triangle_mesh(rec_meshfile)
o3d_gt_mesh = o3d.io.read_triangle_mesh(gt_meshfile)
o3d_rec_pc = o3d.geometry.PointCloud(points=o3d_rec_mesh.vertices)
o3d_gt_pc = o3d.geometry.PointCloud(points=o3d_gt_mesh.vertices)
trans_init = np.eye(4)
threshold = 0.1
reg_p2p = o3d.pipelines.registration.registration_icp(
o3d_rec_pc, o3d_gt_pc, threshold, trans_init,
o3d.pipelines.registration.TransformationEstimationPointToPoint())
# for open3d 0.9.0
# reg_p2p = o3d.registration.registration_icp(
# o3d_rec_pc, o3d_gt_pc, threshold, trans_init,
# o3d.registration.TransformationEstimationPointToPoint())
transformation = reg_p2p.transformation
return transformation
def check_proj(points, W, H, fx, fy, cx, cy, c2w):
"""
Check if points can be projected into the camera view.
"""
c2w = c2w.copy()
c2w[:3, 1] *= -1.0
c2w[:3, 2] *= -1.0
points = torch.from_numpy(points).cuda().clone()
w2c = np.linalg.inv(c2w)
w2c = torch.from_numpy(w2c).cuda().float()
K = torch.from_numpy(
np.array([[fx, .0, cx], [.0, fy, cy], [.0, .0, 1.0]]).reshape(3, 3)).cuda()
ones = torch.ones_like(points[:, 0]).reshape(-1, 1).cuda()
homo_points = torch.cat(
[points, ones], dim=1).reshape(-1, 4, 1).cuda().float() # (N, 4)
cam_cord_homo = w2c@homo_points # (N, 4, 1)=(4,4)*(N, 4, 1)
cam_cord = cam_cord_homo[:, :3] # (N, 3, 1)
cam_cord[:, 0] *= -1
uv = K.float()@cam_cord.float()
z = uv[:, -1:] + 1e-5
uv = uv[:, :2]/z
uv = uv.float().squeeze(-1).cpu().numpy()
edge = 0
mask = (0 <= -z[:, 0, 0].cpu().numpy()) & (uv[:, 0] < W -
edge) & (uv[:, 0] > edge) & (uv[:, 1] < H-edge) & (uv[:, 1] > edge)
return mask.sum() > 0
def calc_3d_mesh_metric(mesh_rec, mesh_gt, align=False):
"""
3D reconstruction metric.
"""
rec_pc = trimesh.sample.sample_surface(mesh_rec, 200000)
rec_pc_tri = trimesh.PointCloud(vertices=rec_pc[0])
gt_pc = trimesh.sample.sample_surface(mesh_gt, 200000)
gt_pc_tri = trimesh.PointCloud(vertices=gt_pc[0])
accuracy_rec = accuracy(gt_pc_tri.vertices, rec_pc_tri.vertices)
completion_rec = completion(gt_pc_tri.vertices, rec_pc_tri.vertices)
completion_ratio_rec = completion_ratio(
gt_pc_tri.vertices, rec_pc_tri.vertices)
accuracy_rec *= 100 # convert to cm
completion_rec *= 100 # convert to cm
completion_ratio_rec *= 100 # convert to %
return {'acc': accuracy_rec, 'comp': completion_rec, 'comp%': completion_ratio_rec}
def calc_3d_metric(rec_meshfile, gt_meshfile, align=True):
"""
3D reconstruction metric.
"""
mesh_rec = trimesh.load(rec_meshfile, process=False)
mesh_gt = trimesh.load(gt_meshfile, process=False)
if align:
transformation = get_align_transformation(rec_meshfile, gt_meshfile)
mesh_rec = mesh_rec.apply_transform(transformation)
rec_pc = trimesh.sample.sample_surface(mesh_rec, 200000)
rec_pc_tri = trimesh.PointCloud(vertices=rec_pc[0])
gt_pc = trimesh.sample.sample_surface(mesh_gt, 200000)
gt_pc_tri = trimesh.PointCloud(vertices=gt_pc[0])
accuracy_rec = accuracy(gt_pc_tri.vertices, rec_pc_tri.vertices)
completion_rec = completion(gt_pc_tri.vertices, rec_pc_tri.vertices)
completion_ratio_rec = completion_ratio(
gt_pc_tri.vertices, rec_pc_tri.vertices)
accuracy_rec *= 100 # convert to cm
completion_rec *= 100 # convert to cm
completion_ratio_rec *= 100 # convert to %
print('accuracy: ', accuracy_rec)
print('completion: ', completion_rec)
print('completion ratio: ', completion_ratio_rec)
return{
'acc': accuracy_rec,
'comp': completion_rec,
'comp ratio': completion_ratio_rec
}
def get_cam_position(gt_meshfile, sx=0.3, sy=0.6, sz=0.6, dx=0.0, dy=0.0, dz=0.0):
mesh_gt = trimesh.load(gt_meshfile)
# Tbw: world_to_bound, bound is defined at the centre of cuboid
to_origin, extents = trimesh.bounds.oriented_bounds(mesh_gt)
extents[2] *= sz
extents[1] *= sy
extents[0] *= sx
# Twb: bound_to_world
transform = np.linalg.inv(to_origin)
transform[0, 3] += dx
transform[1, 3] += dy
transform[2, 3] += dz
return extents, transform
def calc_2d_metric(rec_meshfile, gt_meshfile, unseen_gt_pcd_file,
pose_file=None, gt_depth_render_file=None,
depth_render_file=None, suffix="virt_cams", align=True,
n_imgs=1000, not_counting_missing_depth=True,
sx=0.3, sy=0.6, sz=0.6, dx=0.0, dy=0.0, dz=0.0):
"""
2D reconstruction metric, depth L1 loss. modified from NICE-SLAM
:param rec_meshfile: path to culled reconstructed mesh .ply
:param gt_meshfile: path to culled GT mesh .ply
:param unseen_gt_pcd_file: path to unseen pointcloud file .npy
:param pose_file: path to sampled camera poses, saved as .npz (optional). Redo sampling if not provided
:param gt_depth_render_file: path to rendered depth maps of GT mesh, saved as .npz (optional). Re-render if not provided
:param depth_render_file: path to rendered depth maps of reconstructed mesh, saved as .npz (optional). Re-render if not provided
:param suffix: suffix of reconstructed mesh
:param align:
:param n_imgs: number of views to sample
:param not_counting_missing_depth: remove missing depth pixels in GT depth maps when computing depth L1
:param sx: scale_x
:param sy: scale_y
:param sz: scale_z
:param dx: offset_x
:param dy: offset_y
:param dz: offset_z
:return:
"""
H = 500
W = 500
focal = 300
fx = focal
fy = focal
cx = H/2.0-0.5
cy = W/2.0-0.5
gt_mesh = o3d.io.read_triangle_mesh(gt_meshfile)
rec_mesh = o3d.io.read_triangle_mesh(rec_meshfile)
pc_unseen = np.load(unseen_gt_pcd_file)
if pose_file and os.path.exists(pose_file):
sampled_poses = np.load(pose_file)["poses"]
assert len(sampled_poses) == n_imgs
print("Found saved renering poses! Loading from disk!!!")
else:
sampled_poses = None
print("Saved renering poses NOT FOUND! Will do the sampling")
if gt_depth_render_file and os.path.exists(gt_depth_render_file):
gt_depth_renderings = np.load(gt_depth_render_file)["depths"]
assert len(gt_depth_renderings) == n_imgs
print("Found saved renered gt depths! Loading from disk!!!")
else:
gt_depth_renderings = None
print("Saved renered gt depths NOT FOUND! Will re-render!!!")
if depth_render_file and os.path.exists(depth_render_file):
depth_renderings = np.load(depth_render_file)["depths"]
assert len(depth_renderings) == n_imgs
print("Found saved renered reconstructed depth! Loading from disk!!!")
else:
depth_renderings = None
print("Saved renered reconstructed depth NOT FOUND! Will re-render!!!")
gt_dir = os.path.dirname(unseen_gt_pcd_file)
log_dir = os.path.dirname(rec_meshfile)
if align:
transformation = get_align_transformation(rec_meshfile, gt_meshfile)
rec_mesh = rec_mesh.transform(transformation)
# get vacant area inside the room
extents, transform = get_cam_position(gt_meshfile, sx=sx, sy=sy, sz=sz, dx=dx, dy=dy, dz=dz)
vis = o3d.visualization.Visualizer()
vis.create_window(width=W, height=H)
vis.get_render_option().mesh_show_back_face = True
errors = []
poses = []
gt_depths = []
depths = []
for i in range(n_imgs):
if sampled_poses is None:
while True:
# sample view, and check if unseen region is not inside the camera view
# if inside, then needs to resample
# camera-up (Y-direction) vector under world
up = [0, 0, -1]
# camera origin coord under world coordinate-frame, sampled within extents of the oriented bound
origin = trimesh.sample.volume_rectangular(extents, 1, transform=transform)
origin = origin.reshape(-1)
# sampled target coord under world [tx, ty, tz]
tx = round(random.uniform(-10000, +10000), 2)
ty = round(random.uniform(-10000, +10000), 2)
tz = round(random.uniform(-10000, +10000), 2)
target = [tx, ty, tz]
# look_at vector (camera-Z), from origin to target
target = np.array(target)-np.array(origin)
c2w = viewmatrix(target, up, origin)
tmp = np.eye(4)
tmp[:3, :] = c2w
c2w = tmp
seen = check_proj(pc_unseen, W, H, fx, fy, cx, cy, c2w)
if (~seen):
break
poses.append(c2w)
else:
c2w = sampled_poses[i]
param = o3d.camera.PinholeCameraParameters()
# extrinsic is w2c
param.extrinsic = np.linalg.inv(c2w) # 4x4 numpy array
param.intrinsic = o3d.camera.PinholeCameraIntrinsic(
W, H, fx, fy, cx, cy)
ctr = vis.get_view_control()
ctr.set_constant_z_far(20)
ctr.convert_from_pinhole_camera_parameters(param)
if gt_depth_renderings is None:
vis.add_geometry(gt_mesh, reset_bounding_box=True,)
ctr.convert_from_pinhole_camera_parameters(param)
vis.poll_events()
vis.update_renderer()
gt_depth = vis.capture_depth_float_buffer(True)
gt_depth = np.asarray(gt_depth)
vis.remove_geometry(gt_mesh, reset_bounding_box=True,)
gt_depths.append(gt_depth)
else:
gt_depth = gt_depth_renderings[i]
if depth_renderings is None:
vis.add_geometry(rec_mesh, reset_bounding_box=True,)
ctr.convert_from_pinhole_camera_parameters(param)
vis.poll_events()
vis.update_renderer()
ours_depth = vis.capture_depth_float_buffer(True)
ours_depth = np.asarray(ours_depth)
vis.remove_geometry(rec_mesh, reset_bounding_box=True,)
depths.append(ours_depth)
else:
ours_depth = depth_renderings[i]
if not_counting_missing_depth:
valid_mask = (gt_depth > 0.) & (gt_depth < 19.)
if np.count_nonzero(valid_mask) <= 100:
continue
# print(i, np.count_nonzero(valid_mask))
errors += [np.abs(gt_depth[valid_mask] - ours_depth[valid_mask]).mean()]
else:
errors += [np.abs(gt_depth-ours_depth).mean()]
if pose_file is None:
np.savez(os.path.join(gt_dir, "sampled_poses_{}.npz".format(n_imgs)), poses=poses)
elif not os.path.exists(pose_file):
np.savez(pose_file, poses=poses)
if gt_depth_render_file is None:
np.savez(os.path.join(gt_dir, "gt_depths_{}.npz".format(n_imgs)), depths=gt_depths)
elif not os.path.exists(gt_depth_render_file):
np.savez(gt_depth_render_file, depths=gt_depths)
if depth_render_file is None:
np.savez(os.path.join(log_dir, "depths_{}_{}.npz".format(suffix, n_imgs)), depths=depths)
elif not os.path.exists(depth_render_file):
np.savez(depth_render_file, depths=depths)
errors = np.array(errors)
# from m to cm
print('Depth L1: ', errors.mean() * 100)
return {"Depth L1": errors.mean() * 100}
if __name__ == "__main__":
parser = argparse.ArgumentParser(
description="Arguments to evaluate the reconstruction."
)
parser.add_argument("--rec_mesh", type=str,
help="reconstructed mesh file path")
parser.add_argument("--gt_mesh", type=str,
help="ground truth mesh file path")
parser.add_argument("--dataset_type", type=str, default="Replica",
help="dataset type: [Replica, RGBD]")
parser.add_argument("-2d", "--metric_2d",
action="store_true", help="enable 2D metric")
parser.add_argument("-3d", "--metric_3d",
action="store_true", help="enable 3D metric")
args = parser.parse_args()
if args.metric_3d:
calc_3d_metric(args.rec_mesh, args.gt_mesh)
if args.metric_2d:
assert args.dataset_type in ["Replica", "RGBD"], "Unknown dataset type..."
eval_data_dir = os.path.dirname(args.gt_mesh)
unseen_pc_file = os.path.join(eval_data_dir, "gt_pc_unseen.npy")
pose_file = os.path.join(eval_data_dir, "sampled_poses_1000.npz")
if args.dataset_type == "Replica": # follow NICE-SLAM
sx, sy, sz, dx, dy, dz = 0.3, 0.7, 0.7, 0.0, 0.0, 0.4
elif os.path.basename(eval_data_dir) == "complete_kitchen": # complete_kitchen has special shape
sx, sy, sz, dx, dy, dz = 0.3, 0.5, 0.5, 1.2, 0.0, 1.8
else:
sx, sy, sz, dx, dy, dz = 0.3, 0.6, 0.6, 0.0, 0.0, 0.0
calc_2d_metric(args.rec_mesh, args.gt_mesh, unseen_pc_file, pose_file=pose_file, n_imgs=1000,
not_counting_missing_depth=True, sx=sx, sy=sy, sz=sz, dx=dx, dy=dy, dz=dz)